High Resolution TEM Imaging with Hollow-Cone Illumination

1997 ◽  
Vol 3 (S2) ◽  
pp. 1191-1192 ◽  
Author(s):  
Maxim V. Sidorov ◽  
Martha R. McCartney ◽  
David J. Smith

It has long been realized that imaging with hollow cone illumination (HCI) should, in theory, improve the directly interpretable resolution of TEM by as much as 100% (albeit at the expense of contrast). The principle of HCI was first proposed by Scherzer in 1949 and then reinvented by Hanssen and Trepte in 1971. As opposed to axial illumination, HCI effectively eliminates zeroes and reversals of the transfer function providing direct interpretability of the resulting images. In addition to the substantial resolution enhancement, HCI should reduce significantly the phase-contrast noise inherent in axial HRTEM images. However, there are experimental obstacles for high resolution HCI which make its practical application very difficult to implement. To our knowledge, all observations using HCI so far have not shown all of the expected improvement predicted theoretically. This is believed to be due to the fact that accurate coma-free alignment is required to substantially improve the resolution.

Author(s):  
J. K. Weiss ◽  
W. J. de Ruijter ◽  
M. Gajdardziska-Josifovska ◽  
David J. Smith ◽  
E. Voelkl ◽  
...  

Electron holography has received renewed interest recently as a means of resolution enhancement in high resolution phase contrast imaging and as a technique for imaging microscopic magnetic domain structures. Some of the original applications of the technique involved measurement of the absolute mean inner potential in films of known thickness. This approach has now been extended in order to gain information about changes in elemental concentrations at interfaces in multilayer films.The abruptness of interfaces in multilayer films used for X-ray mirrors strongly affects their reflective properties. Previous studies using high resolution phase contrast imaging have shown that this interface diffuseness can be imaged, but typically with low contrast and an unknown contribution from amplitude contrast effects. The differences in mean inner potential between successive layers suggests that the variation of the mean inner potential across the interface should be a good measurement of the change in elemental concentration.


Author(s):  
T. Geipel ◽  
W. Mader

Hollow-cone imaging (HCI) as a possibility to improve the resolution of a TEM has already been proposed in the late 40ties and besides others, there have been extensive hollow-cone experiments 10 years back using a low resolution TEM with a non-tilt specimen holder. In a recent paper the optimum imaging parameters for HCI were determined leading to an improvement of the resolution by a factor of two. However, there are contrast limitations and experimental problems for HCI which were only partly considered in Ref. and which will be discussed in this paper for a modern electron microscope. Preliminary experiments were performed which are not shown in the abstract.In Fig. 1 ∫ ct f(u)du is plotted versus defocus Δ f for different cone radii Θc and a fixed aperture radius Θo = 1/δ = 5 nm-1 (ct f is the phase contrast transfer function (PCTF) for HCI and δ = 0.2 nm is the resolution of a CM30 supertwin microscope).


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


Author(s):  
T. Oikawa ◽  
H. Kosugi ◽  
F. Hosokawa ◽  
D. Shindo ◽  
M. Kersker

Evaluation of the resolution of the Imaging Plate (IP) has been attempted by some methods. An evaluation method for IP resolution, which is not influenced by hard X-rays at higher accelerating voltages, was proposed previously by the present authors. This method, however, requires truoblesome experimental preperations partly because specially synthesized hematite was used as a specimen, and partly because a special shape of the specimen was used as a standard image. In this paper, a convenient evaluation method which is not infuenced by the specimen shape and image direction, is newly proposed. In this method, phase contrast images of thin amorphous film are used.Several diffraction rings are obtained by the Fourier transformation of a phase contrast image of thin amorphous film, taken at a large under focus. The rings show the spatial-frequency spectrum corresponding to the phase contrast transfer function (PCTF). The envelope function is obtained by connecting the peak intensities of the rings. The evelope function is offten used for evaluation of the instrument, because the function shows the performance of the electron microscope (EM).


Author(s):  
Michael F. Smith ◽  
John P. Langmore

The purpose of image reconstruction is to determine the mass densities within molecules by analysis of the intensities within images. Cryo-EM offers this possibility by virtue of the excellent preservation of internal structure without heavy atom staining. Cryo-EM images, however, have low contrast because of the similarity between the density of biological material and the density of vitreous ice. The images also contain a high background of inelastic scattering. To overcome the low signal and high background, cryo-images are typically recorded 1-3 μm underfocus to maximize phase contrast. Under those conditions the image intensities bear little resemblance to the object, due to the dependence of the contrast transfer function (CTF) upon spatial frequency. Compensation (i.e., correction) for the CTF is theoretically possible, but implementation has been rare. Despite numerous studies of molecules in ice, there has never been a quantitative evaluation of compensated images of biological molecules of known structure.


Author(s):  
P.M. Mul ◽  
B.J.M. Bormans ◽  
L. Schaap

The first Field Emission Guns (FEG) on TEM/STEM instruments were introduced by Philips in 1977. In the past decade these EM400-series microscopes have been very successful, especially in analytical electron microscopy, where the high currents in small probes are particularly suitable. In High Resolution Electron Holography, the high coherence of the FEG has made it possible to approach atomic resolution.Most of these TEM/STEM systems are based on a cold field emitter (CFE). There are, however, a number of disadvantages to CFE’s, because of their very small emission region: the maximum current is limited (a strong disadvantage for high-resolution TEM imaging) and the emission is unstable, requiring special measures to reduce the strong FEG-induced noise. Thermal field emitters (TFE), i.e. a zirconiated field emitter source operating in the thermal or Schottky mode, have been shown to be a viable and attractive alternative to CFE’s. TFE’s have larger emission regions, providing much higher maximum currents, better stability, and reduced sensitivity to vacuum conditions as well as mechanical and electrical interferences.


Author(s):  
O.L. Krivanek ◽  
M.L. Leber

Three-fold astigmatism resembles regular astigmatism, but it has 3-fold rather than 2-fold symmetry. Its contribution to the aberration function χ(q) can be written as:where A3 is the coefficient of 3-fold astigmatism, λ is the electron wavelength, q is the spatial frequency, ϕ the azimuthal angle (ϕ = tan-1 (qy/qx)), and ϕ3 the direction of the astigmatism.Three-fold astigmatism is responsible for the “star of Mercedes” aberration figure that one obtains from intermediate lenses once their two-fold astigmatism has been corrected. Its effects have been observed when the beam is tilted in a hollow cone over a wide range of angles, and there is evidence for it in high resolution images of a small probe obtained in a field emission gun TEM/STEM instrument. It was also expected to be a major aberration in sextupole-based Cs correctors, and ways were being developed for dealing with it on Cs-corrected STEMs.


Author(s):  
S. J. Pennycook

Using a high-angle annular detector on a high-resolution STEM it is possible to form incoherent images of a crystal lattice characterized by strong atomic number or Z contrast. Figure 1 shows an epitaxial Ge film on Si(100) grown by oxidation of Ge-implanted Si. The image was obtained using a VG Microscopes' HB501 STEM equipped with an ultrahigh resolution polepiece (Cs ∽1.2 mm, demonstrated probe FWHM intensity ∽0.22 nm). In both crystals the lattice is resolved but that of Ge shows much brighter allowing the interface to be located exactly and interface steps to be resolved (arrowed). The interface was indistinguishable in the phase-contrast STEM image from the same region, and even at higher resolution the location of the interface is complex. Figure 2 shows a thin region of an MBE-grown ultrathin super-lattice (Si8Ge2)100. The expected compositional modulation would show as one bright row of dots from the 2 Ge monolayers separated by 4 rows of lighter Si columns. The image shows clearly that strain-induced interdiffusion has occurred on the monolayer scale.


Sign in / Sign up

Export Citation Format

Share Document