Chromium Coating for High Resolution SEM

1997 ◽  
Vol 3 (S2) ◽  
pp. 1233-1234
Author(s):  
Ya Chen ◽  
David Wokosin

High quality imaging of the macromolecular structure of biological samples can be obtained when combining high resolution SEM with advanced thin metal film coating techniques. A thin layer of fine grain metal film is often necessary to enrich the secondary electron (SE) signal generation and to enhance the contrast of features of interest, because the yield of SE signal from biological samples is low. Secondary electron signals, types SE-I and SE-II, are generated by primary beam at the impact point or by backscattered electrons (BSE) dislocated from the impact point, respectively (Peters, 1982; Joy, 1984). The SE-II signal yield depends on the amount of BSE signal and the collection ratio of SE-I/SE-II components regulates the surface topographic contrast. Therefore, the low atomic number metals with low backscattering coefficients should be considered for high resolution SEM coating. Chromium, which has both the features of low atomic number (Z=24) and sufficient SE signal yield, is an appropriate choice and was first used by Peters (1982) for high resolution SEM imaging.

Author(s):  
David Joy ◽  
James Pawley

The scanning electron microscope (SEM) builds up an image by sampling contiguous sub-volumes near the surface of the specimen. A fine electron beam selectively excites each sub-volume and then the intensity of some resulting signal is measured. The spatial resolution of images made using such a process is limited by at least three factors. Two of these determine the size of the interaction volume: the size of the electron probe and the extent to which detectable signal is excited from locations remote from the beam impact point. A third limitation emerges from the fact that the probing beam is composed of a finite number of discrete particles and therefore that the accuracy with which any detectable signal can be measured is limited by Poisson statistics applied to this number (or to the number of events actually detected if this is smaller).


Author(s):  
George C. Ruben

Single molecule resolution in electron beam sensitive, uncoated, noncrystalline materials has been impossible except in thin Pt-C replicas ≤ 150Å) which are resistant to the electron beam destruction. Previously the granularity of metal film replicas limited their resolution to ≥ 20Å. This paper demonstrates that Pt-C film granularity and resolution are a function of the method of replication and other controllable factors. Low angle 20° rotary , 45° unidirectional and vertical 9.7±1 Å Pt-C films deposited on mica under the same conditions were compared in Fig. 1. Vertical replication had a 5A granularity (Fig. 1c), the highest resolution (table), and coated the whole surface. 45° replication had a 9Å granulartiy (Fig. 1b), a slightly poorer resolution (table) and did not coat the whole surface. 20° rotary replication was unsuitable for high resolution imaging with 20-25Å granularity (Fig. 1a) and resolution 2-3 times poorer (table). Resolution is defined here as the greatest distance for which the metal coat on two opposing faces just grow together, that is, two times the apparent film thickness on a single vertical surface.


Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


Author(s):  
T. Miyokawa ◽  
H. Kazumori ◽  
S. Nakagawa ◽  
C. Nielsen

We have developed a strongly excited objective lens with a built-in secondary electron detector to provide ultra-high resolution images with high quality at low to medium accelerating voltages. The JSM-6320F is a scanning electron microscope (FE-SEM) equipped with this lens and an incident beam divergence angle control lens (ACL).The objective lens is so strongly excited as to have peak axial Magnetic flux density near the specimen surface (Fig. 1). Since the speciien is located below the objective lens, a large speciien can be accomodated. The working distance (WD) with respect to the accelerating voltage is limited due to the magnetic saturation of the lens (Fig.2). The aberrations of this lens are much smaller than those of a conventional one. The spherical aberration coefficient (Cs) is approximately 1/20 and the chromatic aberration coefficient (Cc) is 1/10. for accelerating voltages below 5kV. At the medium range of accelerating voltages (5∼15kV). Cs is 1/10 and Cc is 1/7. Typical values are Cs-1.lmm. Cc=l. 5mm at WD=2mm. and Cs=3.lmm. Cc=2.9 mm at WD=5mm. This makes the lens ideal for taking ultra-high resolution images at low to medium accelerating voltages.


Author(s):  
William Krakow ◽  
Alec N. Broers

Low-loss scanning electron microscopy can be used to investigate the surface topography of solid specimens and provides enhanced image contrast over secondary electron images. A high resolution-condenser objective lens has allowed the low-loss technique to resolve separations of Au nucleii of 50Å and smaller dimensions of 25Å in samples coated with a fine grained carbon-Au-palladium layer. An estimate of the surface topography of fine grained vapor deposited materials (20 - 100Å) and the surface topography of underlying single crystal Si in the 1000 - 2000Å range has also been investigated. Surface imaging has also been performed on single crystals using diffracted electrons scattered through 10−2 rad in a conventional TEM. However, severe tilting of the specimen is required which degrades the resolution 15 to 100 fold due to image forshortening.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e044463
Author(s):  
Danielle Borg ◽  
Kym Rae ◽  
Corrine Fiveash ◽  
Johanna Schagen ◽  
Janelle James-McAlpine ◽  
...  

IntroductionThe perinatal–postnatal family environment is associated with childhood outcomes including impacts on physical and mental health and educational attainment. Family longitudinal cohort studies collect in-depth data that can capture the influence of an era on family lifestyle, mental health, chronic disease, education and financial stability to enable identification of gaps in society and provide the evidence for changes in government in policy and practice.Methods and analysisThe Queensland Family Cohort (QFC) is a prospective, observational, longitudinal study that will recruit 12 500 pregnant families across the state of Queensland (QLD), Australia and intends to follow-up families and children for three decades. To identify the immediate and future health requirements of the QLD population; pregnant participants and their partners will be enrolled by 24 weeks of gestation and followed up at 24, 28 and 36 weeks of gestation, during delivery, on-ward, 6 weeks postpartum and then every 12 months where questionnaires, biological samples and physical measures will be collected from parents and children. To examine the impact of environmental exposures on families, data related to environmental pollution, household pollution and employment exposures will be linked to pregnancy and health outcomes. Where feasible, data linkage of state and federal government databases will be used to follow the participants long term. Biological samples will be stored long term for future discoveries of biomarkers of health and disease.Ethics and disseminationEthical approval has been obtained from the Mater Research Ethics (HREC/16/MHS/113). Findings will be reported to (1) QFC participating families; (2) funding bodies, institutes and hospitals supporting the QFC; (3) federal, state and local governments to inform policy; (4) presented at local, national and international conferences and (5) disseminated by peer-review publications.


Nanophotonics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 897-903 ◽  
Author(s):  
Oleksandr Buchnev ◽  
Alexandr Belosludtsev ◽  
Victor Reshetnyak ◽  
Dean R. Evans ◽  
Vassili A. Fedotov

AbstractWe demonstrate experimentally that Tamm plasmons in the near infrared can be supported by a dielectric mirror interfaced with a metasurface, a discontinuous thin metal film periodically patterned on the sub-wavelength scale. More crucially, not only do Tamm plasmons survive the nanopatterning of the metal film but they also become sensitive to external perturbations as a result. In particular, by depositing a nematic liquid crystal on the outer side of the metasurface, we were able to red shift the spectral position of Tamm plasmon by 35 nm, while electrical switching of the liquid crystal enabled us to tune the wavelength of this notoriously inert excitation within a 10-nm range.


Sign in / Sign up

Export Citation Format

Share Document