Quantitative 3d Analysis Of Intra-Nuclear Organization In The Tissue Context

1999 ◽  
Vol 5 (S2) ◽  
pp. 1320-1321
Author(s):  
S.J. Lockett ◽  
D.W. Knowles ◽  
D. Pinkel ◽  
C. Ortiz de Solórzano

Confocal microscopy is revealing associations between the internal organization of the nucleus and tissue architecture and function. Such associations may exist which are too subtle or complex for visual observation or quantitative analysis may be required, for example as input data to mathematical modeling of cellular processes. In these circumstances, it is necessary to perform the analysis using computer algorithms. We have developed 3D image analysis (IA) algorithms for segmenting nuclei from within intact tissue specimens, measuring the structure of the nuclei and for segmenting specifically- labeled punctate entities within nuclei. In this study we developed algorithms for measuring the spatial organization of the two copies of a specific DNA locus (labeled using fluorescence in situ hybridization (FISH) ) inside diploid nuclei and with respect to the nuclear organization of the tissue.For each segmented nucleus, its center of mass (CoM) was determined, which informed us about its position in the tissue.

Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 664 ◽  
Author(s):  
Romero-Bueno ◽  
de la Cruz Ruiz ◽  
Artal-Sanz ◽  
Askjaer ◽  
Dobrzynska

The eukaryotic nucleus controls most cellular processes. It is isolated from the cytoplasm by the nuclear envelope, which plays a prominent role in the structural organization of the cell, including nucleocytoplasmic communication, chromatin positioning, and gene expression. Alterations in nuclear composition and function are eminently pronounced upon stress and during premature and physiological aging. These alterations are often accompanied by epigenetic changes in histone modifications. We review, here, the role of nuclear envelope proteins and histone modifiers in the 3-dimensional organization of the genome and the implications for gene expression. In particular, we focus on the nuclear lamins and the chromatin-associated protein BAF, which are linked to Hutchinson–Gilford and Nestor–Guillermo progeria syndromes, respectively. We also discuss alterations in nuclear organization and the epigenetic landscapes during normal aging and various stress conditions, ranging from yeast to humans.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Mojgan H. Naghavi ◽  
Derek Walsh

ABSTRACT Microtubules (MTs) form a rapidly adaptable network of filaments that radiate throughout the cell. These dynamic arrays facilitate a wide range of cellular processes, including the capture, transport, and spatial organization of cargos and organelles, as well as changes in cell shape, polarity, and motility. Nucleating from MT-organizing centers, including but by no means limited to the centrosome, MTs undergo rapid transitions through phases of growth, pause, and catastrophe, continuously exploring and adapting to the intracellular environment. Subsets of MTs can become stabilized in response to environmental cues, acquiring distinguishing posttranslational modifications and performing discrete functions as specialized tracks for cargo trafficking. The dynamic behavior and organization of the MT array is regulated by MT-associated proteins (MAPs), which include a subset of highly specialized plus-end-tracking proteins (+TIPs) that respond to signaling cues to alter MT behavior. As pathogenic cargos, viruses require MTs to transport to and from their intracellular sites of replication. While interactions with and functions for MT motor proteins are well characterized and extensively reviewed for many viruses, this review focuses on MT filaments themselves. Changes in the spatial organization and dynamics of the MT array, mediated by virus- or host-induced changes to MT regulatory proteins, not only play a central role in the intracellular transport of virus particles but also regulate a wider range of processes critical to the outcome of infection.


2007 ◽  
Vol 32 (3) ◽  
pp. 341-350 ◽  
Author(s):  
David W.L. Ma

The new field of membrane rafts has provided fresh insight and a novel framework in which to understand the interaction, relation, and organization of lipids and proteins within cell membranes. This review will examine our current understanding of membrane rafts and their role in human health. In addition, the effect of various lipids, including dietary lipids, on membrane raft structure and function will be discussed. Membrane rafts are found in all cells and are characterized by their high concentration of cholesterol, sphingolipids, and saturated fatty acids. These lipids impart lateral segregation of membrane proteins, thus facilitating the spatial organization and regulation of membrane proteins involved in many cellular processes, such as cell proliferation, apoptosis, and cell signaling. Therefore, membrane rafts are shedding new light on the origins of metabolic disturbances and diseases such as cancer, insulin resistance, inflammation, cardiovascular disease, and Alzheimer’s disease, which will be further discussed in this review.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1960
Author(s):  
K. Tanuj Sapra ◽  
Ohad Medalia

The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.


2021 ◽  
Vol 22 (9) ◽  
pp. 4359
Author(s):  
Sara Martín-Villanueva ◽  
Gabriel Gutiérrez ◽  
Dieter Kressler ◽  
Jesús de la Cruz

Ubiquitin is a small protein that is highly conserved throughout eukaryotes. It operates as a reversible post-translational modifier through a process known as ubiquitination, which involves the addition of one or several ubiquitin moieties to a substrate protein. These modifications mark proteins for proteasome-dependent degradation or alter their localization or activity in a variety of cellular processes. In most eukaryotes, ubiquitin is generated by the proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor, or as a single N-terminal moiety to ribosomal proteins, which are practically invariably eL40 and eS31. Herein, we summarize the contribution of the ubiquitin moiety within precursors of ribosomal proteins to ribosome biogenesis and function and discuss the biological relevance of having maintained the explicit fusion to eL40 and eS31 during evolution. There are other ubiquitin-like proteins, which also work as post-translational modifiers, among them the small ubiquitin-like modifier (SUMO). Both ubiquitin and SUMO are able to modify ribosome assembly factors and ribosomal proteins to regulate ribosome biogenesis and function. Strikingly, ubiquitin-like domains are also found within two ribosome assembly factors; hence, the functional role of these proteins will also be highlighted.


2006 ◽  
Vol 281 (43) ◽  
pp. 32841-32851 ◽  
Author(s):  
Brian DeBosch ◽  
Nandakumar Sambandam ◽  
Carla Weinheimer ◽  
Michael Courtois ◽  
Anthony J. Muslin

The Akt family of serine-threonine kinases participates in diverse cellular processes, including the promotion of cell survival, glucose metabolism, and cellular protein synthesis. All three known Akt family members, Akt1, Akt2 and Akt3, are expressed in the myocardium, although Akt1 and Akt2 are most abundant. Previous studies demonstrated that Akt1 and Akt3 overexpression results in enhanced myocardial size and function. Yet, little is known about the role of Akt2 in modulating cardiac metabolism, survival, and growth. Here, we utilize murine models with targeted disruption of the akt2 or the akt1 genes to demonstrate that Akt2, but not Akt1, is required for insulin-stimulated 2-[3H]deoxyglucose uptake and metabolism. In contrast, akt2-/- mice displayed normal cardiac growth responses to provocative stimulation, including ligand stimulation of cultured cardiomyocytes, pressure overload by transverse aortic constriction, and myocardial infarction. However, akt2-/- mice were found to be sensitized to cardiomyocyte apoptosis in response to ischemic injury, and apoptosis was significantly increased in the peri-infarct zone of akt2-/- hearts 7 days after occlusion of the left coronary artery. These results implicate Akt2 in the regulation of cardiomyocyte metabolism and survival.


2001 ◽  
Vol 711 ◽  
Author(s):  
Alexander Zelikin ◽  
Venkatram Shastri ◽  
David Lynn ◽  
Jian Farhadi ◽  
Ivan Martin ◽  
...  

ABSTRACTConductive polymers such as polypyrrole (Ppy) are potentially useful as an active interface for altering cellular processes and function. Their utilization in medically related applications however have been substantially held back by their non-degradable nature. Herein we report a novel approach to creation of bioerodible polypyrroles via modification of pyrrole beta-carbon with an ionizable moiety. It has been shown that the erosion rate of acid-bearing derivative of polypyrrole increases with pH, which is consistent with the pH dependent ionization of carboxylic acid group. The novel paradigm proposed for the creation of bioerodible polypyrroles allows for simple and efficient control over the erosion rate of the substrate independent of the polymer chain length, via the choice of the terminal ionizable group and its concentration along the polymer backbone.


Author(s):  
Emily R Hager ◽  
Hopi E Hoekstra

Abstract Determining how variation in morphology affects animal performance (and ultimately fitness) is key to understanding the complete process of evolutionary adaptation. Long tails have evolved many times in arboreal and semi-arboreal rodents; in deer mice, long tails have evolved repeatedly in populations occupying forested habit even within a single species (Peromyscus maniculatus). Here we use a combination of functional modeling, laboratory studies, and museum records to test hypotheses about the function of tail-length variation in deer mice. First, we use computational models, informed by museum records documenting natural variation in tail length, to test whether differences in tail morphology between forest and prairie subspecies can influence performance in behavioral contexts relevant for tail use. We find that the deer mouse tail plays little role in statically adjusting center of mass or in correcting body pitch and yaw, but rather it can affect body roll during arboreal locomotion. In this context, we find that even intraspecific tail-length variation could result in substantial differences in how much body rotation results from equivalent tail motions (i.e., tail effectiveness), but the relationship between commonly-used metrics of tail-length variation and effectiveness is non-linear. We further test whether caudal vertebra length, number, and shape are associated with differences in how much the tail can bend to curve around narrow substrates (i.e., tail curvature) and find that, as predicted, the shape of the caudal vertebrae is associated with intervertebral bending angle across taxa. However, although forest and prairie mice typically differ in both the length and number of caudal vertebrae, we do not find evidence that this pattern is the result of a functional trade-off related to tail curvature. Together, these results highlight how even simple models can both generate and exclude hypotheses about the functional consequences of trait variation for organismal-level performance.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Andrius Serva ◽  
Christoph Claas ◽  
Vytaute Starkuviene

In the last years miRNAs have increasingly been recognised as potent posttranscriptional regulators of gene expression. Possibly, miRNAs exert their action on virtually any biological process by simultaneous regulation of numerous genes. The importance of miRNA-based regulation in health and disease has inspired research to investigate diverse aspects of miRNA origin, biogenesis, and function. Despite the recent rapid accumulation of experimental data, and the emergence of functional models, the complexity of miRNA-based regulation is still far from being well understood. In particular, we lack comprehensive knowledge as to which cellular processes are regulated by which miRNAs, and, furthermore, how temporal and spatial interactions of miRNAs to their targets occur. Results from large-scale functional analyses have immense potential to address these questions. In this review, we discuss the latest progress in application of high-content and high-throughput functional analysis for the systematic elucidation of the biological roles of miRNAs.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Ranjith K. Papareddy ◽  
Katalin Páldi ◽  
Subramanian Paulraj ◽  
Ping Kao ◽  
Stefan Lutzmayer ◽  
...  

Abstract Background Eukaryotic genomes are partitioned into euchromatic and heterochromatic domains to regulate gene expression and other fundamental cellular processes. However, chromatin is dynamic during growth and development and must be properly re-established after its decondensation. Small interfering RNAs (siRNAs) promote heterochromatin formation, but little is known about how chromatin regulates siRNA expression. Results We demonstrate that thousands of transposable elements (TEs) produce exceptionally high levels of siRNAs in Arabidopsis thaliana embryos. TEs generate siRNAs throughout embryogenesis according to two distinct patterns depending on whether they are located in euchromatic or heterochromatic regions of the genome. siRNA precursors are transcribed in embryos, and siRNAs are required to direct the re-establishment of DNA methylation on TEs from which they are derived in the new generation. Decondensed chromatin also permits the production of 24-nt siRNAs from heterochromatic TEs during post-embryogenesis, and siRNA production from bipartite-classified TEs is controlled by their chromatin states. Conclusions Decondensation of heterochromatin in response to developmental, and perhaps environmental, cues promotes the transcription and function of siRNAs in plants. Our results indicate that chromatin-mediated siRNA transcription provides a cell-autonomous homeostatic control mechanism to help reconstitute pre-existing chromatin states during growth and development including those that ensure silencing of TEs in the future germ line.


Sign in / Sign up

Export Citation Format

Share Document