Grains and Sub Grains Identification in AISI 430 Stainless Steel with Atomic and Magnetic Force Microscopies

2005 ◽  
Vol 11 (S03) ◽  
pp. 150-153 ◽  
Author(s):  
J. M. C. Vilela ◽  
N. J. L. de Oliveira ◽  
M. L. Talarico ◽  
M. S. Andrade ◽  
R. A. N. M. Barbosa ◽  
...  

Cold rolled sheets of AISI 430 ferritic stainless steel have been widely used in kitchen utensils, ornamental articles, among other products due to their corrosion resistance and good formability. However, a localized increase of the surface roughness, known as ridging, develops during ferritic stainless steel forming [1]. The ridging is caused by anisotropic plastic flow of the material containing alternated bands of different crystallographic textures. These bands, or grain colonies, are formed during hot rolling fabrication step. During this step, the deformed grains can undergo dynamic recrystallization and/or recovery. In the regions where recovery takes place these texture bands are formed. In order to study ridging, it is necessary to identify the recovered regions (regions containing sub grains with nearly the same crystal orientation) and recrystallized regions (regions containing grains with different crystal orientations). Two well established techniques are applied to the characterization of recrystallized and recovered grains: the optical microscopy with polarized light, normally done in samples prepared with colored etching, and the electron backscatter diffraction (EBSD). In this work, atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to study the recrystallization and the recovery of the deformed specimens.

2010 ◽  
Vol 638-642 ◽  
pp. 3009-3014 ◽  
Author(s):  
Rodrigo P. Siqueira ◽  
Hugo Ricardo Zschommler Sandim ◽  
Tarcisio R. Oliveira

Ferritic stainless steels (FSSs) have excellent corrosion resistance and good mechanical properties. Applications include heaters, houseware, and automotive exhaust systems. Alloying, even in small amounts, affects the recrystallization behavior of FSSs by selective dragging or pinning effects. In the present study, we present the main results regarding the recrystallization of a coarse-grained Nb-containing AISI 430 ferritic stainless steel. The material was processed by hot rolling and further annealed at 1250oC for 2 h to promote secondary recrystallization. Following, the material was cold rolled to a 80% reduction in thickness and annealed at 400-1000oC for 15 min. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) were used to characterize the microstructure. Recrystallization of this steel begins at 700oC. Important orientation effects were observed in both as-rolled and annealed conditions. Recrystallization kinetics was strongly dependent on the initial orientation of the coarse grains. Results show that grain boundaries, transition bands and coarse Nb(C,N) particles are preferential sites for nucleation at moderate annealing temperatures.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 140 ◽  
Author(s):  
W. K. Chan ◽  
C. T. Kwok ◽  
K. H. Lo

In the present study, the feasibility of laser surface melting (LSM) of AISI 430 ferritic stainless steel to minimize hydrogen embrittlement (HE) was investigated. LSM of AISI 430 steel was successfully achieved by a 2.3-kW high power diode laser (HPDL) with scanning speeds of 60 mm/s and 80 mm/s (the samples are designated as V60 and V80, respectively) at a power of 2 kW. To investigate the HE effect on the AISI 430 steel without and with LSM, hydrogen was introduced into specimens by cathodic charging in 0.1 M NaOH solution under galvanostatic conditions at a current density of 30 mA/cm2 and 25 °C. Detail microstructural analysis was performed and the correlation of microstructure with HE was evaluated. By electron backscatter diffraction (EBSD) analysis, the austenite contents for the laser-surface melted specimens V60 and V80 are found to be 0.6 and 1.9 wt%, respectively. The amount of retained austenite in LSM specimens was reduced with lower laser scanning speed. The surface microhardness of the laser-surface melted AISI 430 steel (~280 HV0.2) is found to be increased by 56% as compared with that of the substrate (~180 HV0.2) because of the presence of martensite. The degree of embrittlement caused by hydrogen for the charged and non-charged AISI 430 steel was obtained using slow-strain-rate tensile (SSRT) test in air at a strain rate of 3 × 10−5 s−1. After hydrogen pre-charging, the ductility of as-received AISI 430 steel was reduced from 0.44 to 0.25 while the laser-surface melted AISI 430 steel showed similar tensile properties as the as-received one. After LSM, the value of HE susceptibility Iδ decreases from 43.2% to 38.9% and 38.2% for V60 and V80, respectively, due to the presence of martensite.


2013 ◽  
Vol 19 (4) ◽  
pp. 959-968 ◽  
Author(s):  
Andrés Núñez ◽  
Xavier Llovet ◽  
Juan F. Almagro

AbstractUni- and biaxial tension deformation tests, with different degrees of deformation, have been done on AISI 430 (EN 1.4016) ferritic stainless steel samples, which had both different chemical compositions and had undergone different annealing treatments. The initial and deformed materials were characterized by using electron backscatter diffraction and backscatter electron imaging in a scanning electron microscope together with electron probe microanalysis. The correlation observed among the chemical compositions, annealing treatment, and strain level obtained after deformation is discussed.


2013 ◽  
Vol 762 ◽  
pp. 705-710 ◽  
Author(s):  
Saara Mehtonen ◽  
L. Pentti Karjalainen ◽  
David A. Porter

The effect of hot deformation temperature on the deformed microstructures and evolution of microstructure and texture of a 21Cr Ti-Nb dual-stabilized ferritic stainless steel was studied using plane strain hot compression tests on a Gleeble 1500 thermomechanical simulator. The deformation was carried out at 550 - 950 °C with a strain of 0.5 at 1 s-1. The compression was followed by fast cooling to room temperature in order to study the deformed microstructures. Some specimens were heated from the deformation stage to either 750 or 950 °C and held for 0 or 30 s in order to study the nucleation process of recrystallization. The electron backscatter diffraction technique was used to analyze the resultant microstructures and textures. Lowering of the deformation temperature increased the rate of static recrystallization (SRX) and decreased the recrystallized grain size. After deformation at 550 and 600 °C and complete SRX, beneficial γ-fibre texture formed presumably as a result of nucleation at in-grain shear bands. SRX after deformation at 750 °C or above led to the formation of harmful α-fibre textures with weak γ-fibre.


2007 ◽  
Vol 101 (9) ◽  
pp. 09M507 ◽  
Author(s):  
A. Koblischka-Veneva ◽  
M. R. Koblischka ◽  
J. D. Wei ◽  
Y. Zhou ◽  
S. Murphy ◽  
...  

2019 ◽  
Vol 61 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Ali Kaya Gür ◽  
Tülay Yildiz ◽  
Nida Kati ◽  
Sinan Kaya

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ritabrata Dobe ◽  
Anuja Das ◽  
Rabibrata Mukherjee ◽  
Saibal Gupta

AbstractHydrous fluids play a vital role in the chemical and rheological evolution of ductile, quartz-bearing continental crust, where fluid percolation pathways are controlled by grain boundary domains. In this study, widths of grain boundary domains in seven quartzite samples metamorphosed under varying crustal conditions were investigated using Atomic Force Microscopy (AFM) which allows comparatively easy, high magnification imaging and precise width measurements. It is observed that dynamic recrystallization at higher metamorphic grades is much more efficient at reducing grain boundary widths than at lower temperature conditions. The concept of force-distance spectroscopy, applied to geological samples for the first time, allows qualitative estimation of variations in the strength of grain boundary domains. The strength of grain boundary domains is inferred to be higher in the high grade quartzites, which is supported by Kernel Average Misorientation (KAM) studies using Electron Backscatter Diffraction (EBSD). The results of the study show that quartzites deformed and metamorphosed at higher grades have narrower channels without pores and an abundance of periodically arranged bridges oriented at right angles to the length of the boundary. We conclude that grain boundary domains in quartz-rich rocks are more resistant to fluid percolation in the granulite rather than the greenschist facies.


Sign in / Sign up

Export Citation Format

Share Document