scholarly journals Optical Modulator P/N Junction Mapping by Electron Holography and Scanning Capacitance Microscopy

2018 ◽  
Vol 24 (S1) ◽  
pp. 1464-1465
Author(s):  
Y. Y. Wang ◽  
J. Nxumalo ◽  
J. Jeon ◽  
K. Barton ◽  
K. Nummy
2018 ◽  
Vol 112 (23) ◽  
pp. 233502 ◽  
Author(s):  
J. Nxumalo ◽  
D. P. Ioannou ◽  
A. Katnani ◽  
J. Brown ◽  
K. Bandy ◽  
...  

2006 ◽  
Vol 12 (S02) ◽  
pp. 1714-1715
Author(s):  
Z Wang ◽  
D Li

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006


Author(s):  
Hannes Lichte ◽  
Edgar Voelkl

The object wave o(x,y) = a(x,y)exp(iφ(x,y)) at the exit face of the specimen is described by two real functions, i.e. amplitude a(x,y) and phase φ(x,y). In stead of o(x,y), however, in conventional transmission electron microscopy one records only the real intensity I(x,y) of the image wave b(x,y) loosing the image phase. In addition, referred to the object wave, b(x,y) is heavily distorted by the aberrations of the microscope giving rise to loss of resolution. Dealing with strong objects, a unique interpretation of the micrograph in terms of amplitude and phase of the object is not possible. According to Gabor, holography helps in that it records the image wave completely by both amplitude and phase. Subsequently, by means of a numerical reconstruction procedure, b(x,y) is deconvoluted from aberrations to retrieve o(x,y). Likewise, the Fourier spectrum of the object wave is at hand. Without the restrictions sketched above, the investigation of the object can be performed by different reconstruction procedures on one hologram. The holograms were taken by means of a Philips EM420-FEG with an electron biprism at 100 kV.


Author(s):  
Z.L. Wang

An experimental technique for performing electron holography using a non-FEG, non-biprism transmission electron microscope (TEM) has been introduced by Ru et al. A double stacked specimens, one being a single crystal foil and the other the specimen, are loaded in the normal specimen position in TEM. The single crystal, which is placed onto the specimen, is responsible to produce two beams that are equivalent to two virtual coherent sources illuminating the specimen beneath, thus, permitting electron holography of the specimen. In this paper, the imaging theory of this technique is described. Procedures are introduced for digitally reconstructing the holograms.


Author(s):  
E. Völkl ◽  
L.F. Allard ◽  
B. Frost ◽  
T.A. Nolan

Off-axis electron holography has the well known ability to preserve the complex image wave within the final, recorded image. This final image described by I(x,y) = I(r) contains contributions from the image intensity of the elastically scattered electrons IeI (r) = |A(r) exp (iΦ(r)) |, the contributions from the inelastically scattered electrons IineI (r), and the complex image wave Ψ = A(r) exp(iΦ(r)) as:(1) I(r) = IeI (r) + Iinel (r) + μ A(r) cos(2π Δk r + Φ(r))where the constant μ describes the contrast of the interference fringes which are related to the spatial coherence of the electron beam, and Φk is the resulting vector of the difference of the wavefront vectors of the two overlaping beams. Using a software package like HoloWorks, the complex image wave Ψ can be extracted.


Author(s):  
Xiao Zhang

Electron holography has recently been available to modern electron microscopy labs with the development of field emission electron microscopes. The unique advantage of recording both amplitude and phase of the object wave makes electron holography a effective tool to study electron optical phase objects. The visibility of the phase shifts of the object wave makes it possible to directly image the distributions of an electric or a magnetic field at high resolution. This work presents preliminary results of first high resolution imaging of ferroelectric domain walls by electron holography in BaTiO3 and quantitative measurements of electrostatic field distribution across domain walls.


Sign in / Sign up

Export Citation Format

Share Document