scholarly journals Cryo-EM structures of human PRMT5:MEP50 complex reveal chemical basis for designing high-specificity inhibitors

2021 ◽  
Vol 27 (S1) ◽  
pp. 2852-2853
Author(s):  
Gaya Yadav ◽  
Wei Zhao ◽  
Xiaozhi Yang ◽  
Chenglong Li ◽  
Qiu-Xing Jiang
Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Author(s):  
K.S. Kosik ◽  
L.K. Duffy ◽  
S. Bakalis ◽  
C. Abraham ◽  
D.J. Selkoe

The major structural lesions of the human brain during aging and in Alzheimer disease (AD) are the neurofibrillary tangles (NFT) and the senile (neuritic) plaque. Although these fibrous alterations have been recognized by light microscopists for almost a century, detailed biochemical and morphological analysis of the lesions has been undertaken only recently. Because the intraneuronal deposits in the NFT and the plaque neurites and the extraneuronal amyloid cores of the plaques have a filamentous ultrastructure, the neuronal cytoskeleton has played a prominent role in most pathogenetic hypotheses.The approach of our laboratory toward elucidating the origin of plaques and tangles in AD has been two-fold: the use of analytical protein chemistry to purify and then characterize the pathological fibers comprising the tangles and plaques, and the use of certain monoclonal antibodies to neuronal cytoskeletal proteins that, despite high specificity, cross-react with NFT and thus implicate epitopes of these proteins as constituents of the tangles.


Author(s):  
T. F. McCaul ◽  
R. J. Gould

Immuno-electron microscopy has allowed the selective localisation of molecules with high resolution and high specificity. Cryopreparatory methods have provided better retention of antigenicity suitable for precise immunolabelling together with optimal structural preservation of cellular components. Cryosubstitution and cryoultramicrotomy have widely been exploited for immunolabelling. Molecular Distillation Dryer (MDD), a form of freeze-drying technique, has recently been used for immunolabelling of Plasmodium falciparum stress proteins and nuclear ribonucleoprotein particles in cultured cells. In the present study, we report the comparison of all three cryotechniques in the immunolabelling of bacterial antigens of Coxiella burnetii.The highly infectious C. burnetii was prefixed in 3% glutaraldehyde (66 mM cacodylate buffer, pH 6.8 ). The cells were then pre-embedded in 2% low-temperature agarose on Durapore hydrophilic membrane prior to cryofixation using a LifeCell CF100 metal-mirror system. A 1% glutaraldehyde in 100% methanol was used as a medium for cryosubstitution in a Reichert CS Auto Cryosubstitution apparatus.


Author(s):  
Vladimir Popenko ◽  
Natalya Cherny ◽  
Maria Yakovleva

Highly polyploid somatic nucleus (macronucleus) of ciliate Bursaria truncatella under goes severe changes in morphology during cell division. At first, macronucleus (Ma) condences, diminishes in size and turns perpendicular to longitudinal axis of the cell. After short time, Ma turns again, elongates and only afterwards the process of division itself occurs. The biological meaning of these phenomena is not clear.Localization of RNA in the cells was performed on sections of ciliates B. truncatella, embedded in “Lowicryl K4M” at various stages: (1) before cell division (Figs. 2,3); (11) at the stage of macronucleus condensation; (111) during elongation of Ma (Fig.4); (1111) in young cells (0-5min. after division). For cytochemical labelling we used RNaseAcolloidal gold complexes (RNase-Au), which are known to bind to RNA containing cell ularstructures with high specificity. The influence of different parameters on the reliability and reproducibility of labelling was studied. In addition to the factors, discussed elsewhere, we found that the balance of mono- and bivalent cations is of great significance.


1996 ◽  
Vol 5 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Frank E. Musiek ◽  
Cynthia A. McCormick ◽  
Raymond M. Hurley

We performed a retrospective study of 26 patients with acoustic tumors and 26 patients with otologically diagnosed cochlear pathology to determine the sensitivity (hit rate), specificity (false-alarm rate), and efficiency of six auditory brainstem response indices. In addition, a utility value was determined for each of these six indices. The I–V interwave interval, the interaural latency difference, and the absolute latency of wave V provided the highest hit rates, the best A’ values and good utility. The V/I amplitude ratio index provided high specificity but low sensitivity scores. In regard to sensitivity and specificity, using the combination of two indices provided little overall improvement over the best one-index measures.


2005 ◽  
Vol 173 (4S) ◽  
pp. 145-145 ◽  
Author(s):  
Martin Schostak ◽  
Hans Krause ◽  
Jens Köllermann ◽  
Mark Schrader ◽  
Bernd Straub ◽  
...  

1981 ◽  
Vol 45 (02) ◽  
pp. 110-115 ◽  
Author(s):  
György Csákó ◽  
Eva A Suba

SummaryPlatelet aggregations were studied by a turbidimetric method in citrated human platelet-rich plasmas (PRP) in vitro. Human Clq inhibited the aggregations caused by collagens derived from different tissues and species. Clq was needed by weight in comparable quantities to collagen for neutralizing the aggregating effect. The dependence of the inhibitory reaction on the preincubation of platelets with Clq and the differences in the occurrence of aggregating substances in supernatants of PRP triggered with collagen in the presence or absence of Clq, confirmed that Clq exerts its effect by preventing fixation of collagen to platelets. In addition, the high specificity of the inhibitory action of Clq for collagen-induced platelet aggregation was demonstrated by results obtained for testing a variety of aggregating agents in combination with Clq and/or collagen.Since normal concentrations of Clq in the blood are in the range of inhibitory doses of Clq for collagen-induced platelet aggregations in vitro and upon activation of complement Clq is known to dissociate from Cl, it is proposed that Clq may participate in a highly specific manner in regulating platelet reactivity to collagen in vivo.


1997 ◽  
Vol 78 (04) ◽  
pp. 1193-1201 ◽  
Author(s):  
Saulius Butenas ◽  
Maria E DiLorenzo ◽  
Kenneth G Mann

SummarySelective, sensitive assays for the quantitation of serine proteases involved in coagulation and fibrinolysis have been developed employing fluorogenic substrates containing a 6-amino-1-naphthalenesulfonamide leaving group (PNS-substrates). Over one hundred substrates were evaluated for hydrolysis by the serine proteases of blood coagulation and fibrinolysis, and substrate structure-efficiency correlations were examined. PNS-substrates which contain Lys in the P1 position are specific for Lys-plasmin and are either not hydrolyzed or hydrolyzed at a relatively low rate by factor Xa, thrombin, or urokinase-type plasminogen activator (uPA). These substrates allow quantitation of Lys-plasmin at concentrations as low as 1 pM. Eighteen of over 90 substrates tested for factor XIa are hydrolyzed by this enzyme at a relatively high rate reaching a kcat value of 170 s-1 and allowing quantitation of factor XIa at 10 fM. Eighteen of almost 90 PNS-substrates tested display high specificity for thrombin, some exceeding that for factor Xa by > 10,000-fold and > 100-fold for activated protein C (APC). Seven of these substrates have a over 100 s-1 and three of them have a KM below 1 μM. They allow the quantitation of thrombin at concentrations as low as 20 fM. For APC, uPA and the factor Vila/tissue factor complex, quantitation is feasible at 1 pM concentration. For factor Xa and factor VIIa the limits are 0.4 pM and 40 pM respectively. The PNS-substrates presented in this study may be employed for the development of direct and sensitive serine protease assays.


Sign in / Sign up

Export Citation Format

Share Document