Preeclampsia: current understanding of the molecular basis of vascular dysfunction

2006 ◽  
Vol 8 (3) ◽  
pp. 1-20 ◽  
Author(s):  
Sowndramalingam Sankaralingam ◽  
Ivan A. Arenas ◽  
Manoj M. Lalu ◽  
Sandra T. Davidge

Preeclampsia is a pregnancy-specific disorder characterised by hypertension and proteinuria occurring after the 20th week of gestation. Delivery of the placenta results in resolution of the condition, implicating the placenta as a central culprit in the pathogenesis of preeclampsia. In preeclampsia, an inadequate placental trophoblast invasion of the maternal uterine spiral arteries results in poor placental perfusion, leading to placental ischaemia. This could result in release of factors into the maternal circulation that cause widespread activation or dysfunction of the maternal endothelium. Factors in the maternal circulation might induce oxidative stress and/or elicit an inflammatory response in the maternal endothelium, resulting in the altered expression of several genes involved in the regulation of vascular tone. This review addresses the potential circulating factors and the molecular mechanisms involved in the alteration of vascular function that occurs in preeclampsia.

2021 ◽  
Vol 22 (19) ◽  
pp. 10652
Author(s):  
Jelena Munjas ◽  
Miron Sopić ◽  
Aleksandra Stefanović ◽  
Rok Košir ◽  
Ana Ninić ◽  
...  

Preeclampsia (PE) is a leading cause of maternal and neonatal morbidity and mortality worldwide. Defects in trophoblast invasion, differentiation of extravillous trophoblasts and spiral artery remodeling are key factors in PE development. Currently there are no predictive biomarkers clinically available for PE. Recent technological advancements empowered transcriptome exploration and led to the discovery of numerous non-coding RNA species of which microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most investigated. They are implicated in the regulation of numerous cellular functions, and as such are being extensively explored as potential biomarkers for various diseases. Altered expression of numerous lncRNAs and miRNAs in placenta has been related to pathophysiological processes that occur in preeclampsia. In the following text we offer summary of the latest knowledge of the molecular mechanism by which lnRNAs and miRNAs (focusing on the chromosome 19 miRNA cluster (C19MC)) contribute to pathophysiology of PE development and their potential utility as biomarkers of PE, with special focus on sample selection and techniques for the quantification of lncRNAs and miRNAs in maternal circulation.


2015 ◽  
Vol 309 (11) ◽  
pp. R1326-R1343 ◽  
Author(s):  
Frank T. Spradley ◽  
Ana C. Palei ◽  
Joey P. Granger

Preeclampsia (PE) is a pregnancy-specific disorder typically presenting as new-onset hypertension and proteinuria. While numerous epidemiological studies have demonstrated that obesity increases the risk of PE, the mechanisms have yet to be fully elucidated. Growing evidence from animal and human studies implicate placental ischemia in the etiology of this maternal syndrome. It is thought that placental ischemia is brought about by dysfunctional cytotrophoblast migration and invasion into the uterus and subsequent lack of spiral arteriole widening and placental perfusion. Placental ischemia/hypoxia stimulates the release of soluble placental factors into the maternal circulation where they cause endothelial dysfunction, particularly in the kidney, to elicit the clinical manifestations of PE. The most recognized of these factors are the anti-angiogenic sFlt-1 and pro-inflammatory TNF-α and AT1-AA, which promote endothelial dysfunction by reducing levels of the provasodilator nitric oxide and stimulating production of the potent vasoconstrictor endothelin-1 and reactive oxygen species. We hypothesize that obesity-related metabolic factors increase the risk for developing PE by impacting various stages in the pathogenesis of PE, namely, 1) cytotrophoblast migration and placental ischemia; 2) release of soluble placental factors into the maternal circulation; and 3) maternal endothelial and vascular dysfunction. This review will summarize the current experimental evidence supporting the concept that obesity and metabolic factors like lipids, insulin, glucose, and leptin affect placental function and increase the risk for developing hypertension in pregnancy by reducing placental perfusion; enhancing placental release of soluble factors; and by increasing the sensitivity of the maternal vasculature to placental ischemia-induced soluble factors.


2004 ◽  
Vol 287 (1) ◽  
pp. H40-H45 ◽  
Author(s):  
Sukrutha Veerareddy ◽  
Christy-Lynn M. Cooke ◽  
Philip N. Baker ◽  
Sandra T. Davidge

Oxidative stress mediated by prooxidants has been implicated in the pathogenesis of vascular disorders. However, the effect of prooxidants on myogenic regulation of vascular function and the differential influence of gender is not known. SOD, an intracellular enzyme, restricts excess prooxidant levels and may limit vascular dysfunction. We therefore tested the effects of Cu,Zn SOD deficiency on vascular tone in both male and female SOD knockout (SOD−/−) mice. We hypothesized that myogenic tone would be enhanced in SOD−/− mice by excess prooxidants compared with wild-type control mice. Indeed, resistance-sized mesenteric arteries from SOD−/− mice exhibited enhanced myogenic tone compared with control mice. Myogenic tone was lower in female than male control mice. Interestingly, this gender effect was absent in SOD−/− mice, such that myogenic tone of mesenteric arteries from females was equated to that of arteries from males. Furthermore, the pathways that modulate myogenic tone were diverse. In both male and female control mice, inhibition of prostaglandin H synthase (PGHS) and nitric oxide synthase (NOS) pathways enhanced myogenic tone. In female SOD−/− mice, inhibition of PGHS and NOS pathways enhanced myogenic tone to a greater extent compared with control mice. Conversely, in male SOD−/− mice, NOS and PGHS inhibition did not alter tone and only inhibition of gap junctions enhanced myogenic tone. In conclusion, this study revealed enhanced myogenic tone in SOD−/− mice compared with control mice. Furthermore, Cu,Zn SOD deficiency particularly enhanced myogenic tone in female mice such that their vascular tone attained the level of male SOD−/− mice, possibly mediated by prooxidants.


Author(s):  
Marcelo González ◽  
José Carlos Rivas

The endothelium is an organ with a key role in the maintenance of cardiovascular health through the regulation of vascular tone, vascular resistance, blood flow, and arterial pressure. These functions are related with the synthesis and release of vasoactive molecules, mainly vasodilators like nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). Both factors are released and diffused from endothelial cells to the smooth muscle cells, where there is a subsequent activation of signaling pathways that finally decrease the intracellular calcium to induce the vascular relaxation. The study of the molecular mechanisms that underlie the endothelial function still is in development, but from the evidence obtained from the endothelial cells in vitro studies are possible to partially describe the pathways to regulate the physiological endothelial function and the disturbances in pathological conditions. In this mini-review, we describe the main mechanisms for NO synthesis and the role of potassium channels related with EDHF. We include schemes and graphical summaries for better understanding of the molecular regulation of vascular tone in the human cardiovascular system.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Augusto C Montezano ◽  
Ross Hepburn ◽  
Delyth Graham ◽  
Rhian M Touyz

Osteoprotegerin (OPG) levels are increased in metabolic diseases, and are a biomarker of vascular dysfunction and cardiovascular risk. Mechanisms related to OPG-induced vascular dysfunction and its role in hypertension are not fully understood, but we previously demonstrated that OPG induces vascular dysfunction through ROS-dependent mechanisms. Here we assessed the molecular mechanisms whereby OPG regulates ROS and vascular function, with a focus on syndecan-1. VSMCs from normotensive (WKY) and hypertensive (SHRSP) rats were stimulated with OPG (50 ng/mL). ROS production was measured by lucigenin, amplex red and ELISA. In VSMCs from WKY rats, OPG increased ROS generation (158±15% vs veh, p<0.05). This effect was blocked by the syndecan-1 inhibitor (synstatin) and by removal of syndecan-1 sulfate proteoglycans side chains, chondroitinase and heparinase. OPG also increased H 2 O 2 (2 fold) and ONOO - (1.5 fold) levels in VSMCs (p<0.05). H 2 O 2 further stimulates ROS levels and redox signalling through activation of TRPM2, a redox-sensitive Ca 2+ channel. TRPM2 inhibitors, 8-bromo-ADPR (8Br) and N-(p-amylcinnamoyl)anthranilic acid (ACA), did not block OPG-induced ROS generation in VSMCs from WKY rats. Syndecan-1 activation leads to FAK and c-Src activation, which are redox-sensitive signalling proteins. FAK, but not c-Src, activation (117±2%, p<0.05) was observed after OPG stimulation of WKY VSMCs. In VSMCS from SHRSP rats, OPG effects on ROS generation were exacerbated (230±40%, p<0.05) and inhibited by synstatin, 8Br and ACA. OPG also increased FAK (118±2) and c-Src (113±1) activation (p<0.05) in VSMCs from SHRSP rats. In conclusion, OPG regulation of oxidative stress is increased in hypertension and involves not only syndecan-1, but also TRPM2 channels, which may lead to activation of redox-sensitive proteins and vascular damage.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Manuel Thieme ◽  
Sema Sivritas ◽  
Sebastian A Potthoff ◽  
Evanthia Mergia ◽  
Lars C Rump ◽  
...  

The kidney plays an outstanding role in the blood pressure (BP) regulation. The renal vasoconstrictor response to angiotensin (Ang) II is balanced by the NO/cGMP-signalling cascade. Ang II causes hypertension and vascular dysfunction by reducing cGMP sensitivity. Ang II is able to increase cGMP degradation by activating phosphodiesterase (PDE)1 and PDE5. The aim of the present study was to identify the predominant PDE subunit regulating renal blood flow (RBF) and vascular tone during hypertension. Therefore, we tested in vivo effects of acute PDE1 (vinpocetine) and PDE5 (sildenafil) inhibition at baseline and during acute Ang II infusion (200ng/kg/min). Furthermore, we examined the impact of PDE-inhibition on Ang II dependent hypertension (500ng/kg/min; 14 days) and on renal vascular function in the isolated perfused kidney. Acute vinpocetine administration (0.8-800μg/kg BW) showed almost no effect on systemic BP and RBF at baseline and during acute Ang II infusion. In contrast, sildenafil (0.8-800μg/kg BW) significantly decreased BP under baseline conditions. During acute Ang II infusion, BP reduction and RBF increase induced by sildenafil was even more pronounced suggesting a pivotal role of the PDE5 in the regulation of renal vascular tone. Based on these results, we tested whether inhibition of the PDE5 protects from hypertension and vascular dysfunction. Indeed, chronic sildenafil treatment significantly attenuated Ang II dependent hypertension in C57BL/6 (vehicle vs. sil: 156±4 vs. 139±7; p<0.05). Moreover, Sildenafil treatment significantly improved NO-dependent vasorelaxation in kidneys of Ang II- treated C57BL/6. To confirm that PDE5 is activated by an increased NO/cGMP signaling, we used eNOS-KO mice, a model known for decreased NO dependent cGMP generation. In eNOS-KO mice, sildenafil failed to reduce Ang II dependent hypertension (172,4 ± 4,3 mmHg vs. 166,1 ± 3,8 mmHg, p=0,2753) and did not improve vascular dysfunction in Ang II treated kidneys. In summary, the PDE5 is the predominant PDE regulating RBF. Inhibition of PDE5 by sildenafil ameliorates chronic Ang II dependent hypertension and improves vascular dysfunction. This study reveals new evidence for the pivotal role of PDE5 in the pathogenesis of AngII-induced hypertension.


2017 ◽  
Vol 234 (1) ◽  
pp. T67-T82 ◽  
Author(s):  
Jennifer J DuPont ◽  
Iris Z Jaffe

Since the mineralocorticoid receptor (MR) was cloned 30 years ago, it has become clear that MR is expressed in extra-renal tissues, including the cardiovascular system, where it is expressed in all cells of the vasculature. Understanding the role of MR in the vasculature has been of particular interest as clinical trials show that MR antagonism improves cardiovascular outcomes out of proportion to changes in blood pressure. The last 30 years of research have demonstrated that MR is a functional hormone-activated transcription factor in vascular smooth muscle cells and endothelial cells. This review summarizes advances in our understanding of the role of vascular MR in regulating blood pressure and vascular function, and its contribution to vascular disease. Specifically, vascular MR contributes directly to blood pressure control and to vascular dysfunction and remodeling in response to hypertension, obesity and vascular injury. The literature is summarized with respect to the role of vascular MR in conditions including: pulmonary hypertension; cerebral vascular remodeling and stroke; vascular inflammation, atherosclerosis and myocardial infarction; acute kidney injury; and vascular pathology in the eye. Considerations regarding the impact of age and sex on the function of vascular MR are also described. Further investigation of the precise molecular mechanisms by which MR contributes to these processes will aid in the identification of novel therapeutic targets to reduce cardiovascular disease (CVD)-related morbidity and mortality.


Physiology ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Jonathan Ledoux ◽  
Matthias E. Werner ◽  
Joseph E. Brayden ◽  
Mark T. Nelson

Different calcium signals in the endothelium and smooth muscle target different types of Ca2+-sensitive K+ channels to modulate vascular function. These differential calcium signals and targets represent multilayered opportunities for prevention and/or treatment of vascular dysfunctions.


2013 ◽  
Vol 58 (No. 6) ◽  
pp. 289-297 ◽  
Author(s):  
B. Kempisty ◽  
D. Bukowska ◽  
M. Wozna ◽  
H. Piotrowska ◽  
M. Jackowska ◽  
...  

Endometritis-pyometra is the most frequent and complex pathology in domestic bitches. This process involves several immunological changes as well as molecular mechanisms responsible for inflammation in the female uterus. The various clinical stages of pyometra are associated with various symptoms. In this review, several aspects are described, including physiological and pathological mechanisms as well as molecular changes which take place during induction of endometritis-pyometra. The authors also highlight the important role of growth factors and their receptors in this process. It is well known that pyometra is a compound process which mainly involves immunological changes during inflammation. However, this review presents a new overview of this process, which includes changes at the molecular level, e.g., the altered expression of genes crucial for the development of this disease. Although pyometra is the most frequent disease of the reproductive tract in bitches, the molecular basis of this process is still not entirely understood. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document