Pasteurella multocidaand bovine respiratory disease

2007 ◽  
Vol 8 (2) ◽  
pp. 129-150 ◽  
Author(s):  
S. M. Dabo ◽  
J. D. Taylor ◽  
A. W. Confer

AbstractPasteurella multocidais a pathogenic Gram-negative bacterium that has been classified into three subspecies, five capsular serogroups and 16 serotypes.P. multocidaserogroup A isolates are bovine nasopharyngeal commensals, bovine pathogens and common isolates from bovine respiratory disease (BRD), both enzootic calf pneumonia of young dairy calves and shipping fever of weaned, stressed beef cattle.P. multocidaA:3 is the most common serotype isolated from BRD, and these isolates have limited heterogeneity based on outer membrane protein (OMP) profiles and ribotyping. Development ofP. multocida-induced pneumonia is associated with environmental and stress factors such as shipping, co-mingling, and overcrowding as well as concurrent or predisposing viral or bacterial infections. Lung lesions consist of an acute to subacute bronchopneumonia that may or may not have an associated pleuritis. Numerous virulence or potential virulence factors have been described for bovine respiratory isolates including adherence and colonization factors, iron-regulated and acquisition proteins, extracellular enzymes such as neuraminidase, lipopolysaccharide, polysaccharide capsule and a variety of OMPs. Immunity of cattle against respiratory pasteurellosis is poorly understood; however, high serum antibodies to OMPs appear to be important for enhancing resistance to the bacterium. Currently availableP. multocidavaccines for use in cattle are predominately traditional bacterins and a live streptomycin-dependent mutant. The field efficacy of these vaccines is not well documented in the literature.

2009 ◽  
Vol 10 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Robert W. Fulton

AbstractBovine respiratory disease (BRD) research has provided significant understanding of the disease over the past 26 years. Modern research tools that have been used include monoclonal antibodies, genomics, polymerase chain reaction, immunohistochemistry (IHC), DNA vaccines and viral vectors coding for immunogens. Emerging/reemerging viruses and new antigenic strains of viruses and bacteria have been identified. Methods of detection and the role for cattle persistently infected bovine viral diarrhea virus (BVDV) were identified; viral subunits, cellular components and bacterial products have been characterized. Product advances have included vaccines for bovine respiratory syncytial virus, Mannheimia haemolytica and Pasteurella multocida; the addition of BVDV2 to the existing vaccines and new antibiotics. The role of Mycoplasma spp., particularly Mycoplasma bovis in BRD, has been more extensively studied. Bovine immunology research has provided more specific information on immune responses, T cell subsets and cytokines. The molecular and genetic basis for viral–bacterial synergy in BRD has been described. Attempts have been made to document how prevention of BRD by proper vaccination and management prior to exposure to infectious agents can minimize disease and serve as economic incentives for certified health programs.


1988 ◽  
Vol 6 (1) ◽  
pp. 27-35 ◽  
Author(s):  
S.W. Martin ◽  
G. Darlington ◽  
K. Bateman ◽  
J. Holt

2015 ◽  
Vol 3 (5) ◽  
Author(s):  
Juan E. Abrahante ◽  
Samuel S. Hunter ◽  
Samuel K. Maheswaran ◽  
Melissa J. Hauglund ◽  
Fred M. Tatum ◽  
...  

Here, we report the draft genome of Pasteurella multocida isolate P1062 recovered from pneumonic bovine lung in the United States in 1959.


2000 ◽  
Vol 38 (1) ◽  
pp. 327-332
Author(s):  
D. C. DeRosa ◽  
G. D. Mechor ◽  
J. J. Staats ◽  
M. M. Chengappa ◽  
T. R. Shryock

ABSTRACT Twenty-four matched pairs of isolates of Pasteurella haemolytica and three matched pairs of isolates of Pasteurella multocida were isolated by using a nasal swab and a transtracheal swab from individual calves with clinical signs of bovine respiratory disease. The identity of each matched pair was confirmed biochemically and serologically. The similarity of the isolates obtained from a nasal swab and from a transtracheal swab was compared by using ribotyping and antibiotic susceptibility analyses. Although the calves were sampled only once with a nasal and a transtracheal swab, when both samples were bacteriologically positive the nasal swab identified the same bacterial species as the transtracheal swab 96% of the time. The nasal swab isolate was genetically identical to the transtracheal isolate in 70% of the matched pairs. Six different ribotypes were observed for the P. haemolytica isolates, while only one ribotype was observed for the limited number of P. multocida isolates. Of the six P. haemolytica ribotypes, two ribotypes predominated. All the paired isolates displayed similar susceptibility to ceftiofur, erythromycin, tilmicosin, trimethoprim-sulfamethoxazole, and florfenicol, with some minor variations for ampicillin and spectinomycin. These results suggest that a nasal swab culture can be predictive of the bacterial pathogen within the lung when the isolates are from an acutely ill animal and can be used to determine antibiotic susceptibility.


2020 ◽  
Vol 7 (4) ◽  
Author(s):  
Héctor Sumano ◽  
José A. Valencia ◽  
Marcela Viveros ◽  
Graciela Tapia-Pérez ◽  
Lilia Gutiérrez

A trial to evaluate the treatment of bovine respiratory disease (BRD) was established with tulathromycin (Tul-group) and tilmicosin (Til-group). This latter antibacterial drug is pharmaceutically prepared for 8-10 d sustained release. The challenge was carried out with spontaneously BRD-affected bulls, divided into Til-group (ɳ=44) and Tul-group (ɳ=50). Bulls were treated only once with either antibacterial drugs. Bacteriological analysis, arterial and venous blood chemistry, gasometrical parameters, and body temperature were obtained before and after treatment. The clinical cure rate was registered on days 7, 15, and 30. No mortality was observed. Clinical cure was statistically undistinguishable on these days (P> 0.05), and in both groups, all animals were considered healthy until day 30. Only customary pathogens were isolated i.e., Mannhemia hemolytica 38.88% (70/180), Pasteurella multocida 26.11% (47/180), Histophilus somni 18.33% (33/180, and Trueperella pyogenes 16.66% (30/180).


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 358
Author(s):  
Neupane ◽  
Nayduch ◽  
Zurek

House flies are important nuisance pests in a variety of confined livestock operations. More importantly, house flies are known mechanical vectors of numerous animal and human pathogens. Bovine respiratory disease (BRD) is an economically important, complex illness of cattle associated with several bacteria and viruses. The role of flies in the ecology and transmission of bacterial pathogens associated with BRD is not understood. Using culture-dependent and culture-independent methods, we examined the prevalence of the BRD bacterial complex Mannheimia haemolytica, Pasteurella multocida and Histophilus somni in house flies collected in a commercial feedlot from a pen with cattle exhibiting apparent BRD symptoms. Using both methods, M. haemolytica was detected in 11.7% of house flies, followed by P. multocida (5.0%) and H. somni (3.3%). The presence of BRD bacterial pathogens in house flies suggests that this insect plays a role in the ecology of BRD pathogens and could pose a risk as a potential reservoir and/or a vector of BRD pathogens among individual cattle and in their environment.


Sign in / Sign up

Export Citation Format

Share Document