scholarly journals UV-Vis spectroscopy of stardust

2006 ◽  
Vol 5 (4) ◽  
pp. 287-293 ◽  
Author(s):  
C.D. Fernandes ◽  
D. Johnson ◽  
J.C. Bridges ◽  
Monica M. Grady

NASA's Stardust mission flew through the coma of comet Wild 2 in January 2004, capturing dust grains as it did so. The grains were returned safely to Earth in January 2006, and are in the process of being distributed to investigators. As members of the Spectroscopy Preliminary Examination Team, we are preparing to analyse Stardust grains. Our contribution is to measure the spectrum of the grains between 200 nm (in the near ultraviolet) and 800 nm (near infrared). The purpose of the measurement is to provide an additional technique for characterizing the grains, one that is complementary to other spectroscopic techniques and one that produces results that can be matched directly with spectra acquired remotely (with telescope or spacecraft instrumentation). As part of the preparation for analysis of Stardust materials, we are producing a database of spectra from appropriate minerals, and are honing the technique through analysis of primitive meteorites.

Author(s):  
Alexander Richards ◽  
Matthew Weschler ◽  
Michael Durller

Abstract To help solve the navigational problem, i.e., being able to successfully locate a circuit for probing or editing without destroying chip functionality, a near-infrared (NIR), near-ultraviolet (NUV), and visible spectrum camera system was developed that attaches to most focused ion beam (FIB) or scanning electron microscope vacuum chambers. This paper reviews the details of the design and implementation of the NIR/NUV camera system, as instantiated upon the FEI FIB 200, with a particular focus on its use for the visualization of buried structures, and also for non-destructive real time area of interest location and end point detection. It specifically considers the use of the micro-optical camera system for its benefit in assisting with frontside and backside circuit edit, as well as other typical FIB milling activities. The quality of the image obtained by the IR camera rivals or exceeds traditional optical based imaging microscopy techniques.


2020 ◽  
Vol 44 (8) ◽  
pp. 851-860
Author(s):  
Joy Eliaerts ◽  
Natalie Meert ◽  
Pierre Dardenne ◽  
Vincent Baeten ◽  
Juan-Antonio Fernandez Pierna ◽  
...  

Abstract Spectroscopic techniques combined with chemometrics are a promising tool for analysis of seized drug powders. In this study, the performance of three spectroscopic techniques [Mid-InfraRed (MIR), Raman and Near-InfraRed (NIR)] was compared. In total, 364 seized powders were analyzed and consisted of 276 cocaine powders (with concentrations ranging from 4 to 99 w%) and 88 powders without cocaine. A classification model (using Support Vector Machines [SVM] discriminant analysis) and a quantification model (using SVM regression) were constructed with each spectral dataset in order to discriminate cocaine powders from other powders and quantify cocaine in powders classified as cocaine positive. The performances of the models were compared with gas chromatography coupled with mass spectrometry (GC–MS) and gas chromatography with flame-ionization detection (GC–FID). Different evaluation criteria were used: number of false negatives (FNs), number of false positives (FPs), accuracy, root mean square error of cross-validation (RMSECV) and determination coefficients (R2). Ten colored powders were excluded from the classification data set due to fluorescence background observed in Raman spectra. For the classification, the best accuracy (99.7%) was obtained with MIR spectra. With Raman and NIR spectra, the accuracy was 99.5% and 98.9%, respectively. For the quantification, the best results were obtained with NIR spectra. The cocaine content was determined with a RMSECV of 3.79% and a R2 of 0.97. The performance of MIR and Raman to predict cocaine concentrations was lower than NIR, with RMSECV of 6.76% and 6.79%, respectively and both with a R2 of 0.90. The three spectroscopic techniques can be applied for both classification and quantification of cocaine, but some differences in performance were detected. The best classification was obtained with MIR spectra. For quantification, however, the RMSECV of MIR and Raman was twice as high in comparison with NIR. Spectroscopic techniques combined with chemometrics can reduce the workload for confirmation analysis (e.g., chromatography based) and therefore save time and resources.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 298
Author(s):  
Shufang Liu ◽  
Shu’e Wang ◽  
Zhanzuo Liu

The morphology of nanomaterials may affect their interaction with biomacromolecules such as proteins. Previous work has studied the size-dependent binding of pristine nC60 to bovine/human serum albumin using the fluorometric method and found that the fluorescence inner filter effect might affect this interaction. However, if it is necessary to accurately calculate and obtain binding information, the fluorescence inner filter effect should not be ignored. This work aimed to further investigate the effect of the fluorescence inner filter on the interaction between pristine nC60 with different particle sizes (140–160, 120–140, 90–110, 50–70, and 30–50 nm) and bovine serum albumin for a more accurate comprehension of the binding of pristine nC60 to bovine serum albumin. The nC60 nanoparticles with different size distributions used in the experiments were obtained by the solvent displacement and centrifugation method. UV-Vis spectroscopy and fluorescence spectroscopy were used to study the binding of nC60 with different size distributions to bovine serum albumin (BSA) before and after eliminating the fluorescence inner filter effect. The results showed that the fluorescence inner filter effect had an influence on the interaction between nC60 and proteins to some extent, and still did not change the rule of the size-dependent binding of nC60 nanoparticles to BSA. Further studies on the binding parameters (binding constants and the number of binding sites) between them were performed, and the effect of the binding on BSA structures and conformation were also speculated.


2017 ◽  
Author(s):  
K. Max Zhang ◽  
Bo Yang ◽  
Geng Chen ◽  
Jiajun Gu ◽  
James Schwab ◽  
...  

Abstract. DC, also referred to as Delta-C, measures enhanced light absorption of particulate matter (PM) samples at the near-ultraviolet (UV) range relative to the near-infrared range, which has been proposed previously as a woodsmoke marker due to the presence of enhanced UV light absorbing materials from wood combustion. In this paper, we further evaluated the applications and limitations of using DC as both a qualitative and semi-quantitative woodsmoke marker via joint continuous measurements of PM2.5 (by nephelometer pDR-1500) and light-absorptive PM (by 2-wavelength and 7-wavelength Aethalometer®) in three Northeastern U.S. cities/towns including Rutland, VT, Saranac Lake, NY and Ithaca, NY. We compared the pDR-1500 against a FEM PM2.5 sampler (BAM 1020), and identified a close agreement between the two instruments in a woodsmoke-dominated ambient environment. The analysis of seasonal and diurnal trends of DC, BC (880 nm) and PM2.5 concentrations supports the use of DC as an adequate qualitative marker. The strong linear relationships between PM2.5 and DC in both woodsmoke-dominated ambient and plume environments suggest that DC can reasonably serve as a semi-quantitative woodsmoke marker. We proposed a DC-based indicator for woodsmoke emission, which was then shown to exhibit relatively strong linear relationship with heating demand. While we observed reproducible PM2.5-DC relationships in similar woodsmoke-dominated ambient environments, those relationships differ significantly with different environments, and among individual woodsmoke sources. DC correlated much more closely with PM2.5 than EcoChem PAS2000-reported PAH in woodsmoke-dominated ambient environments. Our analysis also indicates the potential for PM2.5-DC relationships to be utilized to distinguish different combustion and operating conditions of woodsmoke sources, and that DC-Heating demand relationships could be adopted to estimate woodsmoke emissions. However, future studies are needed to elucidate those relationships.


2018 ◽  
Vol 616 ◽  
pp. A64 ◽  
Author(s):  
M. Meftah ◽  
T. Corbard ◽  
A. Hauchecorne ◽  
F. Morand ◽  
R. Ikhlef ◽  
...  

Context. In 2015, the International Astronomical Union (IAU) passed Resolution B3, which defined a set of nominal conversion constants for stellar and planetary astronomy. Resolution B3 defined a new value of the nominal solar radius (R⊙N = 695 700 km km) that is different from the canonical value used until now (695 990 km). The nominal solar radius is consistent with helioseismic estimates. Recent results obtained from ground-based instruments, balloon flights, or space-based instruments highlight solar radius values that are significantly different. These results are related to the direct measurements of the photospheric solar radius, which are mainly based on the inflection point position methods. The discrepancy between the seismic radius and the photospheric solar radius can be explained by the difference between the height at disk center and the inflection point of the intensity profile on the solar limb. At 535.7 nm (photosphere), there may be a difference of ∼330 km between the two definitions of the solar radius. Aims. The main objective of this work is to present new results of the solar radius in the near-ultraviolet, the visible, and the near-infrared from PICARD space-based and ground-based observations. Simulations show the strong influence of atmosphere effects (refraction and turbulence) on ground-based solar radius determinations and highlight the interest of space-based solar radius determinations, particularly during planet transits (Venus or Mercury), in order to obtain more realistic and accurate measurements. Methods. Solar radius observations during the 2012 Venus transit have been made with the SOlar Diameter Imager and Surface Mapper (SODISM) telescope on board the PICARD spacecraft. We used the transit of Venus as an absolute calibration to determine the solar radius accurately at several wavelengths. Our results are based on the determination of the inflection point position of the solar limb-darkening function (the most common solar radius definition). A realistic uncertainty budget is provided for each solar radius obtained with the PICARD space-based telescope during the 2012 Venus transit. The uncertainty budget considers several sources of error (detection of the centers of Venus and Sun in PICARD images, positions of Sun and Venus from ephemeris (planetary theory), PICARD on-board timing, PICARD spacecraft position, and optical distortion correction from PICARD images). Results. We obtain new values of the solar radius from the PICARD mission at several wavelengths and in different solar atmosphere regions. The PICARD spacecraft with its SODISM telescope was used to measure the radius of the Sun during the Venus transit in 2012. At 535.7 nm, the solar radius is equal to 696 134 ± 261 km (combined standard uncertainty based (ξ) on the uncertainty budget). At 607.1 nm, the solar radius is equal to 696 156 ± 145 km (ξ), and the standard deviation of the solar radius mean value is ±22 km. At 782.2 nm, the solar radius is equal to 696 192 ± 247 km (ξ). The PICARD space-based results as well as PICARD ground-based results show that the solar radius wavelength dependence in the visible and the near-infrared is extremely weak. The differences in inflection point position of the solar radius at 607.1 nm, 782.2 nm, and 1025.0 nm from a reference at 535.7 nm are less than 60 km for the different PICARD measurements.


Food Control ◽  
2015 ◽  
Vol 48 ◽  
pp. 75-83 ◽  
Author(s):  
Simon A. Haughey ◽  
Pamela Galvin-King ◽  
Yen-Cheng Ho ◽  
Steven E.J. Bell ◽  
Christopher T. Elliott

2018 ◽  
Vol 30 (02) ◽  
pp. 1850008 ◽  
Author(s):  
Mehrdad Dadgostar ◽  
Seyed Kamaledin Setarehdan ◽  
Sohrab Shahzadi ◽  
Ata Akin

In the present study, a classification of functional near-infrared spectroscopy (fNIRS) based on support vector machine (SVM) is presented. It is a non-invasive method monitoring human brain function by evaluating the concentration variation of oxy-hemoglobin and deoxy-hemoglobin. fNIRS is a functional optical imaging technology that measures the neural activities and hemodynamic responses in brain. The data were gathered from 11 healthy volunteers and 16 schizophrenia of the same average age by a 16-channel fNIRS (NIROXCOPE 301 system developed at the Neuro-Optical Imaging Laboratory, continuous-wave dual wavelength). Schizophrenia is a mental disorder that is characterized by mental processing collapse and weak emotional responses. This mental disorder is usually accompanied by a serious disturbance in social and occupational activities. The signals were initially preprocessed by DWT to remove any systemic physiological impediment. A preliminary examination by the genetic algorithm (GA) suggested that some channels of the recreated fNIRS signals required further investigation. The energy of these recreated channel signals was computed and utilized for signal arrangement. We used SVM-based classifier to determine the cases of schizophrenia. The result of six channels is higher than 16 channels. The results demonstrated a classification precision of about 87% in the discovery of schizophrenia in the healthy subjects.


2021 ◽  
pp. 1-27
Author(s):  
Marfran C. D. Santos ◽  
João V. M. Mariz ◽  
Raissa V. O. Silva ◽  
Camilo L. M. Morais ◽  
Kássio M. G. Lima

In view of the global pandemic that started in 2020, caused by COVID-19, the importance of the existence of fast, reliable, cheap diagnostic techniques capable of detecting the virus even in the first days of infection became evident. This review discusses studies involving the use of spectroscopic techniques in the detection of viruses in clinical samples. Techniques based on mid-infrared, near-infrared, Raman, and molecular fluorescence are explained and it was demonstrated how they can be used in conjunction with computational tools of multivariate analysis to build models capable of detecting viruses. Studies that used real clinical samples from 2011 to 2021 were analyzed. The results demonstrate the potential of the techniques in detecting viruses. Spectroscopic techniques, as well as chemometric techniques, were also explained. Viral diagnosis based on spectroscopy has interesting advantages compared to standard techniques such as: fast results, no need for reagents, non-destructiveness for the sample, no need for sample preparation, relatively low cost, among others. Several studies have corroborated the real possibility that, in the near future, we may have spectroscopic tools being successfully applied in viral diagnosis.


Sign in / Sign up

Export Citation Format

Share Document