scholarly journals Solar radius determined from PICARD/SODISM observations and extremely weak wavelength dependence in the visible and the near-infrared

2018 ◽  
Vol 616 ◽  
pp. A64 ◽  
Author(s):  
M. Meftah ◽  
T. Corbard ◽  
A. Hauchecorne ◽  
F. Morand ◽  
R. Ikhlef ◽  
...  

Context. In 2015, the International Astronomical Union (IAU) passed Resolution B3, which defined a set of nominal conversion constants for stellar and planetary astronomy. Resolution B3 defined a new value of the nominal solar radius (R⊙N = 695 700 km km) that is different from the canonical value used until now (695 990 km). The nominal solar radius is consistent with helioseismic estimates. Recent results obtained from ground-based instruments, balloon flights, or space-based instruments highlight solar radius values that are significantly different. These results are related to the direct measurements of the photospheric solar radius, which are mainly based on the inflection point position methods. The discrepancy between the seismic radius and the photospheric solar radius can be explained by the difference between the height at disk center and the inflection point of the intensity profile on the solar limb. At 535.7 nm (photosphere), there may be a difference of ∼330 km between the two definitions of the solar radius. Aims. The main objective of this work is to present new results of the solar radius in the near-ultraviolet, the visible, and the near-infrared from PICARD space-based and ground-based observations. Simulations show the strong influence of atmosphere effects (refraction and turbulence) on ground-based solar radius determinations and highlight the interest of space-based solar radius determinations, particularly during planet transits (Venus or Mercury), in order to obtain more realistic and accurate measurements. Methods. Solar radius observations during the 2012 Venus transit have been made with the SOlar Diameter Imager and Surface Mapper (SODISM) telescope on board the PICARD spacecraft. We used the transit of Venus as an absolute calibration to determine the solar radius accurately at several wavelengths. Our results are based on the determination of the inflection point position of the solar limb-darkening function (the most common solar radius definition). A realistic uncertainty budget is provided for each solar radius obtained with the PICARD space-based telescope during the 2012 Venus transit. The uncertainty budget considers several sources of error (detection of the centers of Venus and Sun in PICARD images, positions of Sun and Venus from ephemeris (planetary theory), PICARD on-board timing, PICARD spacecraft position, and optical distortion correction from PICARD images). Results. We obtain new values of the solar radius from the PICARD mission at several wavelengths and in different solar atmosphere regions. The PICARD spacecraft with its SODISM telescope was used to measure the radius of the Sun during the Venus transit in 2012. At 535.7 nm, the solar radius is equal to 696 134 ± 261 km (combined standard uncertainty based (ξ) on the uncertainty budget). At 607.1 nm, the solar radius is equal to 696 156 ± 145 km (ξ), and the standard deviation of the solar radius mean value is ±22 km. At 782.2 nm, the solar radius is equal to 696 192 ± 247 km (ξ). The PICARD space-based results as well as PICARD ground-based results show that the solar radius wavelength dependence in the visible and the near-infrared is extremely weak. The differences in inflection point position of the solar radius at 607.1 nm, 782.2 nm, and 1025.0 nm from a reference at 535.7 nm are less than 60 km for the different PICARD measurements.

Author(s):  
Alexander Richards ◽  
Matthew Weschler ◽  
Michael Durller

Abstract To help solve the navigational problem, i.e., being able to successfully locate a circuit for probing or editing without destroying chip functionality, a near-infrared (NIR), near-ultraviolet (NUV), and visible spectrum camera system was developed that attaches to most focused ion beam (FIB) or scanning electron microscope vacuum chambers. This paper reviews the details of the design and implementation of the NIR/NUV camera system, as instantiated upon the FEI FIB 200, with a particular focus on its use for the visualization of buried structures, and also for non-destructive real time area of interest location and end point detection. It specifically considers the use of the micro-optical camera system for its benefit in assisting with frontside and backside circuit edit, as well as other typical FIB milling activities. The quality of the image obtained by the IR camera rivals or exceeds traditional optical based imaging microscopy techniques.


2017 ◽  
Author(s):  
K. Max Zhang ◽  
Bo Yang ◽  
Geng Chen ◽  
Jiajun Gu ◽  
James Schwab ◽  
...  

Abstract. DC, also referred to as Delta-C, measures enhanced light absorption of particulate matter (PM) samples at the near-ultraviolet (UV) range relative to the near-infrared range, which has been proposed previously as a woodsmoke marker due to the presence of enhanced UV light absorbing materials from wood combustion. In this paper, we further evaluated the applications and limitations of using DC as both a qualitative and semi-quantitative woodsmoke marker via joint continuous measurements of PM2.5 (by nephelometer pDR-1500) and light-absorptive PM (by 2-wavelength and 7-wavelength Aethalometer®) in three Northeastern U.S. cities/towns including Rutland, VT, Saranac Lake, NY and Ithaca, NY. We compared the pDR-1500 against a FEM PM2.5 sampler (BAM 1020), and identified a close agreement between the two instruments in a woodsmoke-dominated ambient environment. The analysis of seasonal and diurnal trends of DC, BC (880 nm) and PM2.5 concentrations supports the use of DC as an adequate qualitative marker. The strong linear relationships between PM2.5 and DC in both woodsmoke-dominated ambient and plume environments suggest that DC can reasonably serve as a semi-quantitative woodsmoke marker. We proposed a DC-based indicator for woodsmoke emission, which was then shown to exhibit relatively strong linear relationship with heating demand. While we observed reproducible PM2.5-DC relationships in similar woodsmoke-dominated ambient environments, those relationships differ significantly with different environments, and among individual woodsmoke sources. DC correlated much more closely with PM2.5 than EcoChem PAS2000-reported PAH in woodsmoke-dominated ambient environments. Our analysis also indicates the potential for PM2.5-DC relationships to be utilized to distinguish different combustion and operating conditions of woodsmoke sources, and that DC-Heating demand relationships could be adopted to estimate woodsmoke emissions. However, future studies are needed to elucidate those relationships.


2022 ◽  
Vol 163 (2) ◽  
pp. 45
Author(s):  
G. H. Rieke ◽  
Kate Su ◽  
G. C. Sloan ◽  
E. Schlawin

Abstract A challenge in absolute calibration is to relate very bright stars with physical flux measurements to faint ones within range of modern instruments, e.g., those on large ground-based telescopes or the James Webb Space Telescope (JWST). We propose Sirius as the fiducial color standard. It is an A0V star that is slowly rotating and does not have infrared excesses due to either hot dust or a planetary debris disk; it also has a number of accurate (∼1%–2%) absolute flux measurements. We accurately transfer the near-infrared flux from Sirius to BD +60 1753, an unobscured early A-type star (A1V, V ≈ 9.6, E(B – V) ≈ 0.009) that is faint enough to serve as a primary absolute flux calibrator for JWST. Its near-infrared spectral energy distribution and that of Sirius should be virtually identical. We have determined its output relative to that of Sirius in a number of different ways, all of which give consistent results within ∼1%. We also transfer the calibration to GSPC P330-E, a well-calibrated close solar analog (G2V). We have emphasized the 2MASS K S band, since it represents a large number and long history of measurements, but the theoretical spectra (i.e., from CALSPEC) of these stars can be used to extend this result throughout the near- and mid-infrared.


2013 ◽  
Vol 23 ◽  
pp. 451-453 ◽  
Author(s):  
COSTANTINO SIGISMONDI

The role of Venus and Mercury transits is crucial to know the past history of the solar diameter. Through the W parameter, the logarithmic derivative of the radius with respect to the luminosity, the past values of the solar luminosity can be recovered. The black drop phenomenon affects the evaluation of the instants of internal and external contacts between the planetary disk and the solar limb. With these observed instants compared with the ephemerides the value of the solar diameter is recovered. The black drop and seeing effects are overcome with two fitting circles, to Venus and to the Sun, drawn in the undistorted part of the image. The corrections of ephemerides due to the atmospheric refraction will also be taken into account. The forthcoming transit of Venus will allow an accuracy on the diameter of the Sun better than 0.01 arcsec, with good images of the ingress and of the egress taken each second. Chinese solar observatories are in the optimal conditions to obtain valuable data for the measurement of the solar diameter with the Venus transit of 5/6 June 2012 with an unprecedented accuracy, and with absolute calibration given by the ephemerides.


2019 ◽  
Vol 963 ◽  
pp. 272-275
Author(s):  
Yoshitaka Nishihara ◽  
Koji Kamei ◽  
Kenji Momose ◽  
Hiroshi Osawa

Suppression of the forward voltage degradation is essential in fabricating bipolar devices on silicon carbide. Using a highly N–doped 4H–epilayer as an enhancing minority carrier recombination layer is a powerful tool for reducing the expansion of BPDs converted at the epi/sub interface; however, these BPDs cannot be observed by using the near–infrared photoluminescence in the layer. Near–ultraviolet photoluminescence was instead used to detect BPDs as dark lines. In addition, a short BPD converted near the epi/sub interface and contributing to the degradation was detected. When this evaluation was applied to the fabrication of a pin diode including a highly N–doped 4H–epilayer, the Vf shift was suppressed in comparison with that in a diode without the layer.


2019 ◽  
Vol 487 (4) ◽  
pp. 5188-5208 ◽  
Author(s):  
Jason L Sanders ◽  
Leigh Smith ◽  
N Wyn Evans ◽  
Philip Lucas

ABSTRACT We analyse the kinematics of the Galactic bar-bulge using proper motions from the ESO public survey Vista Variables in the Via Lactea (VVV) and the second Gaia data release. Gaia has provided some of the first absolute proper motions within the bulge and the near-infrared VVV multi-epoch catalogue complements Gaia in highly extincted low-latitude regions. We discuss the relative-to-absolute calibration of the VVV proper motions using Gaia. Along lines of sight spanning $-10\lt \ell /\, \mathrm{deg}\lt 10$ and $-10\lt b/\, \mathrm{deg}\lt 5$, we probabilistically model the density and velocity distributions as a function of distance of ∼45 million stars. The transverse velocities confirm the rotation signature of the bar seen in spectroscopic surveys. The differential rotation between the double peaks of the magnitude distribution confirms the X-shaped nature of the bar-bulge. Both transverse velocity components increase smoothly along the near side of the bar towards the Galactic Centre, peak at the Galactic Centre, and decline on the far side. The anisotropy is σℓ/σb ≈ 1.1–1.3 within the bulk of the bar, reducing to 0.9–1.1 when rotational broadening is accounted for, and exhibits a clear X-shaped signature. The vertex deviation in ℓ and b is significant |ρℓb| ≲ 0.2, greater on the near side of the bar and produces a quadrupole signature across the bulge indicating approximate radial alignment. We have re-constructed the 3D kinematics from the assumption of triaxiality, finding good agreement with spectroscopic survey results. In the co-rotating frame, we find evidence of bar-supporting x1 orbits and tangential bias in the in-plane dispersion field.


1998 ◽  
Vol 526 ◽  
Author(s):  
R. F. Haglund ◽  
D. R. Ermer ◽  
A. H. Lines ◽  
M. R. Papantonakis ◽  
H. K. Park ◽  
...  

AbstractUltrashort-pulse lasers with fundamental wavelengths ranging from near-infrared to near-ultraviolet are increasingly being used for laser-induced surface modification of non-metallic solids. The relaxation of the initial electronic excitation into vibrational relaxation modes can produce efficient ablation and other desirable surface modifications with little collateral damage because the laser energy is deposited on a time scale much shorter than thermal diffusion times. Little is known, however, about how ultrashort pulses interact with insulators at wavelengths in the vibrational infrared. This paper describes surface modifications achieved by picosecond laser irradiation in the 2-10 lim range. The laser source was a tunable, free-electron laser (FEL) with I-ps micro-pulses spaced 350 ps apart in a macropulse lasting up to 4 μs, with an average power of up to 3 W. This unusual pulse structure makes possible novel tests of the influences vs fluence and intensity, as well as the effects of resonant vibrational excitation. As model materials systems, we studied calcium carbonate, its isoelectronic cousin sodium nitrate, and fused silica. Particularly intriguing are surface modifications achieved by tuning the laser into vibrational resonances and overtones of the target materials, or by tailoring the energy content of the pulse. The mechanisms underlying these effects, and their implications for materials-modification strategies, are discussed.


2018 ◽  
Vol 609 ◽  
pp. A73 ◽  
Author(s):  
R. Rezaei

Context. Light bridges (LBs) are elongated structures with enhanced intensity embedded in sunspot umbra and pores. Aims. We studied the properties of a sample of 60 LBs observed with the Interface Region Imaging Spectrograph (IRIS). Methods. Using IRIS near- and far-ultraviolet spectra, we measured the line intensity, width, and Doppler shift; followed traces of LBs in the chromosphere and transition region (TR); and compared LB parameters with umbra and quiet Sun. Results. There is a systematic emission enhancement in LBs compared to nearby umbra from the photosphere up to the TR. Light bridges are systematically displaced toward the solar limb at higher layers: the amount of the displacement at one solar radius compares well with the typical height of the chromosphere and TR. The intensity of the LB sample compared to the umbra sample peaks at the middle/upper chromosphere where they are almost permanently bright. Spectral lines emerging from the LBs are broader than the nearby umbra. The systematic redshift of the Si iv line in the LB sample is reduced compared to the quiet Sun sample. We found a significant correlation between the line width of ions arising at temperatures from 3 × 104 to 1.5 × 105 K as there is also a strong spatial correlation among the line and continuum intensities. In addition, the intensity−line width relation holds for all spectral lines in this study. The correlations indicate that the cool and hot plasma in LBs are coupled. Conclusions. Light bridges comprise multi-temperature and multi-disciplinary structures extending up to the TR. Diverse heating sources supply the energy and momentum to different layers, resulting in distinct dynamics in the photosphere, chromosphere, and TR.


Sign in / Sign up

Export Citation Format

Share Document