scholarly journals Jupiter – friend or foe? I: The asteroids

2008 ◽  
Vol 7 (3-4) ◽  
pp. 251-261 ◽  
Author(s):  
J. Horner ◽  
B.W. Jones

AbstractThe asteroids are a major source of potential impactors on the Earth today. It has long been assumed that the giant planet Jupiter acts as a shield, significantly lowering the impact rate on the Earth from both cometary and asteroidal bodies. Such shielding, it is claimed, enabled the development and evolution of life in a collisional environment, which is not overly hostile. The reduced frequency of impacts, and of related mass extinctions, would have allowed life the time to thrive, where it would otherwise have been suppressed. However, in the past, little work has been carried out to examine the validity of this idea. In the first of several papers, we examine the degree to which the impact risk resulting from a population representative of the asteroids is enhanced or reduced by the presence of a giant planet, in an attempt to understand fully the impact regime under which life on Earth developed. Our results show that the situation is far less clear cut that has previously been assumed, that is, the presence of a giant planet can act to enhance the impact rate of asteroids on the Earth significantly.

2008 ◽  
Vol 8 (2) ◽  
pp. 75-80 ◽  
Author(s):  
J. Horner ◽  
B.W. Jones

AbstractIt has long been assumed that the planet Jupiter acts as a giant shield, significantly lowering the impact rate of minor bodies upon the Earth, and thus enabling the development and evolution of life in a collisional environment which is not overly hostile. In other words, it is thought that, thanks to Jupiter, mass extinctions have been sufficiently infrequent that the biosphere has been able to diversify and prosper. However, in the past, little work has been carried out to examine the validity of this idea. In the second of a series of papers, we examine the degree to which the impact risk resulting from objects on Centaur-like orbits is affected by the presence of a giant planet, in an attempt to fully understand the impact regime under which life on Earth has developed. The Centaurs are a population of ice-rich bodies which move on dynamically unstable orbits in the outer Solar system. The largest Centaurs known are several hundred kilometres in diameter, and it is certain that a great number of kilometre or sub-kilometre sized Centaurs still await discovery. These objects move on orbits which bring them closer to the Sun than Neptune, although they remain beyond the orbit of Jupiter at all times, and have their origins in the vast reservoir of debris known as the Edgeworth–Kuiper belt that extends beyond Neptune. Over time, the giant planets perturb the Centaurs, sending a significant fraction into the inner Solar System where they become visible as short-period comets. In this work, we obtain results which show that the presence of a giant planet can act to significantly change the impact rate of short-period comets on the Earth, and that such planets often actually increase the impact flux greatly over that which would be expected were a giant planet not present.


2009 ◽  
Vol 9 (1) ◽  
pp. 1-10 ◽  
Author(s):  
J. Horner ◽  
B.W. Jones ◽  
J. Chambers

AbstractIt has long been assumed that the planet Jupiter acts as a giant shield, significantly lowering the impact rate of minor bodies on Earth. However, until recently, very little work had been carried out examining the role played by Jupiter in determining the frequency of such collisions. In this work, the third of a series of papers, we examine the degree to which the impact rate on Earth resulting from the Oort cloud comets is enhanced or lessened by the presence of a giant planet in a Jupiter-like orbit, in an attempt to more fully understand the impact regime under which life on Earth has developed. Our results show that the presence of a giant planet in a Jupiter-like orbit significantly alters the impact rate of Oort cloud comets on Earth, decreasing the rate as the mass of the giant planet increases. The greatest bombardment flux is observed when no giant planet is present.


Author(s):  
Gerrit L. Verschuur

Most scientists now agree that some sixty-five million years ago, an immense comet slammed into the Yucatan, detonating a blast twenty million times more powerful than the largest hydrogen bomb, punching a hole ten miles deep in the earth. Trillions of tons of rock were vaporized and launched into the atmosphere. For a thousand miles in all directions, vegetation burst into flames. There were tremendous blast waves, searing winds, showers of molten matter from the sky, earthquakes, and a terrible darkness that cut out sunlight for a year, enveloping the planet in freezing cold. Thousands of species of plants and animals were obliterated, including the dinosaurs, some of which may have become extinct in a matter of hours. In Impact, Gerrit L. Verschuur offers an eye-opening look at such catastrophic collisions with our planet. Perhaps more important, he paints an unsettling portrait of the possibility of new collisions with earth, exploring potential threats to our planet and describing what scientists are doing right now to prepare for this awful possibility. Every day something from space hits our planet, Verschuur reveals. In fact, about 10,000 tons of space debris fall to earth every year, mostly in meteoric form. The author recounts spectacular recent sightings, such as over Allende, Mexico, in 1969, when a fireball showered the region with four tons of fragments, and the twenty-six pound meteor that went through the trunk of a red Chevy Malibu in Peekskill, New York, in 1992 (the meteor was subsequently sold for $69,000 and the car itself fetched $10,000). But meteors are not the greatest threat to life on earth, the author points out. The major threats are asteroids and comets. The reader discovers that astronomers have located some 350 NEAs ("Near Earth Asteroids"), objects whose orbits cross the orbit of the earth, the largest of which are 1627 Ivar (6 kilometers wide) and 1580 Betula (8 kilometers). Indeed, we learn that in 1989, a bus-sized asteroid called Asclepius missed our planet by 650,000 kilometers (a mere six hours), and that in 1994 a sixty-foot object passed within 180,000 kilometers, half the distance to the moon. Comets, of course, are even more deadly. Verschuur provides a gripping description of the small comet that exploded in the atmosphere above the Tunguska River valley in Siberia, in 1908, in a blinding flash visible for several thousand miles (every tree within sixty miles of ground zero was flattened). He discusses Comet Swift-Tuttle--"the most dangerous object in the solar system"--a comet far larger than the one that killed off the dinosaurs, due to pass through earth's orbit in the year 2126. And he recounts the collision of Comet Shoemaker-Levy 9 with Jupiter in 1994, as some twenty cometary fragments struck the giant planet over the course of several days, casting titanic plumes out into space (when Fragment G hit, it outshone the planet on the infrared band, and left a dark area at the impact site larger than the Great Red Spot). In addition, the author describes the efforts of Spacewatch and other groups to locate NEAs, and evaluates the idea that comet and asteroid impacts have been an underrated factor in the evolution of life on earth. Astronomer Herbert Howe observed in 1897: "While there are not definite data to reason from, it is believed that an encounter with the nucleus of one of the largest comets is not to be desired." As Verschuur shows in Impact, we now have substantial data with which to support Howe's tongue-in-cheek remark. Whether discussing monumental tsunamis or the innumerable comets in the Solar System, this book will enthrall anyone curious about outer space, remarkable natural phenomenon, or the future of the planet earth.


Author(s):  
Bill Jenkins

The dominant school of geology in Edinburgh in the early nineteenth century was that of the followers of the German mineralogist Abraham Gottlob Werner. His most important disciple in the English-speaking world was Edinburgh’s professor of natural history, Robert Jameson. The Wernerians believed that the history of the earth was fundamentally directional; they believed the earth started out as a ball of hot fluid from which the different rocks that now form the crust of the planet gradually precipitated out over geological time. It is argued in this chapter that this directional model of the geological history of the earth was peculiarly compatible with a progressive model of the history of life on earth. The changes in the physical condition of the earth over geological time were seen by some Wernerian geologists as driving the evolution of life.


2012 ◽  
Vol 11 (3) ◽  
pp. 147-156 ◽  
Author(s):  
J. Horner ◽  
B. W. Jones

AbstractFor many years, it has been assumed that Jupiter has prevented the Earth from being subject to a punishing impact regime that would have greatly hindered the development of life. Here, we present the fourth in a series of dynamical studies investigating this hypothesis. In our earlier work, we examined the effect of Jupiter's mass on the impact rate experienced by the Earth. Here, we extend that approach to consider the influence of Jupiter's orbital eccentricity and inclination on the impact rate from asteroidal bodies and short-period comets. We first considered scenarios in which Jupiter's orbital eccentricity was somewhat higher and somewhat lower than that in our Solar System, for a variety of ‘Jupiter’ masses. We find that Jupiter's orbital eccentricity plays a moderate role in determining the impact flux at Earth, with more eccentric orbits resulting in a noticeably higher impact rate of asteroids than is the case for more circular orbits. This is particularly pronounced at high ‘Jupiter’ masses. For the short-period comets, the same effect is clearly apparent, albeit to a much lesser degree. The flux of short-period comets impacting the Earth is slightly higher for more eccentric Jovian orbits. We also considered scenarios in which Jupiter's orbital inclination was greater than that in our Solar System. Increasing Jupiter's orbital inclination greatly increased the flux of asteroidal impactors upon the Earth. However, at the highest tested inclination, the disruption to the Asteroid belt was so great that the belt would be entirely depleted after an astronomically short period of time. In such a system, the impact flux from asteroid bodies would therefore be very low, after an initial period of intense bombardment. By contrast, the influence of Jovian inclination on impacts from short-period comets was very small. A slight reduction in the impact flux was noted for the moderate and high inclination scenarios considered in this work – the results for inclinations of 5° and 25° were essentially identical.


2011 ◽  
Vol 10 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Georg Feulner

AbstractEpisodes of species mass extinction dramatically affected the evolution of life on Earth, but their causes remain a source of debate. Even more controversy surrounds the hypothesis of periodicity in the fossil record, with conflicting views still being published in the scientific literature, often even based on the same state-of-the-art datasets. From an empirical point of view, limitations of the currently available data on extinctions and possible causes remain an important issue. From a theoretical point of view, it is likely that a focus on single extinction causes and strong periodic forcings has strongly contributed to this controversy. Here I show that if there is a periodic extinction signal at all, it is much more likely to result from a combination of a comparatively weak periodic cause and various random factors. Tests of this unified model of mass extinctions on the available data show that the model is formally better than a model with random extinction causes only. However, the contribution of the periodic component is small compared to factors such as impacts or volcanic eruptions.


Author(s):  
D. S. Stevenson

AbstractPlate tectonics drives variation in sea-level, over intervals of approximately107–108years. These variations may have significant effects on the pace of (biological) evolution through the elimination of terrestrial niches and the expansion of shallow-water marine niches. However, within the solar system, only the Earth experiences this kind of tectonism. Venus displays regional tectonism, characterized by rising diapirs within the plastic mantle. Impinging on the lithosphere, these plumes produce a range of structures of varying dimensions; the uplift of which would raise sea-level, were Venus to have oceans. Using Magellan observations of Venus, we model the impact of regional tectonism on sea-level for given areas of Venusian ocean, then compare the effect with terrestrial tectonic processes for similar oceanic area. We show that despite variation in the geographical extent of Venusian-style tectonic processes, the styles of regional tectonism on Venus can produce the same order of magnitude changes in sea-level, for a given area of ocean, as plate tectonics. Consequently, we examine some of the impacts of marine transgression on habitability and the evolution of life.


Author(s):  
Andrew C. Scott

Raging wildfires have devastated vast areas of California and Australia in recent years, and predictions are that we will see more of the same in coming years as a result of climate change. But this is nothing new. Since the dawn of life on land, large-scale fires have played their part in shaping life on Earth. Andrew C. Scott tells the whole story of fire's impact on our planet's atmosphere, climate, vegetation, ecology, and the evolution of plant and animal life. It has caused mass extinctions, and it has propelled the spread of flowering plants. The exciting evidence we can now draw on has been preserved in fossilized charcoal, found in rocks hundreds of millions of years old, from all over the world. These reveal incredibly fine details of prehistoric plants, and tell us about climates from deep in earth's history. They also give us insight into how early hominids and humans tamed fire and used it. Looking at the impact of wildfires in our own time, Scott also looks forward to how we might better manage them in future, as climate change has an increasing effect on our world.


2018 ◽  
Vol 4 (1) ◽  
pp. 391-404
Author(s):  
Ariesman M

Water is a primary necessity for the process of life on earth, so there is no life if there is no water in the earth as Allah says "And out of the water we made all things alive". It is estimated that around 321 million Indonesians will experience water scarcity by 2025. Population growth is not proportional to water availability, industrial growth, and wasteful public behavior is the main cause. Pondok pesantren which has about 3,759,198 santri throughout Indonesia will be able to feel the impact if the pattern of water use is not in use sparingly. The application of the Sunnah of the Prophet sallallaahu alaihi wasallam and applied technology is very effective in saving water. The number of students as much as that by using the wudu 1 mud 'can save 8,693,145 liters and if in rupiah it is as much as Rp. 45.239.129.


2016 ◽  
Vol 4 (2) ◽  
pp. 26-33
Author(s):  
Piotr Skubała

AbstractIt the long history of life on the Earth five major mass extinctions were observed. Nowadays, the impact of human activities on the planet has accelerated the loss of species and ecosystems to a level comparable to a sixth mass extinction, the first driven by a living species. Surprisingly, this fact rarely reaches the public consciousness. The negative influence of human activity is observed in whole area of land ecosystems, whereas marine ecosystems are at risk of entering a phase of extinction unprecedented in human history. We have domesticated landscapes and ecosystems causing unforeseen changes in ecosystem attributes. Humanity has already overshot global biocapacity by 50% and now lives unsustainabily by depleting stocks of natural capital. Three the Earth-system processes - climate change, rate of biodiversity loss and interference with the nitrogen cycle - have already transgressed their boundaries. Human activities are of sufficient magnitude to suggest that we have triggered a new geological epoch, the Anthropocene. The “Biosphere 2” project revailed that we are not able to build and control a different system life and that we are totally dependent on the present biosphere. The experiment known in the literature as “The Tragedy of the Commons” reminds us that we need frugality and cooperation to solve environmental problems and survive.


Sign in / Sign up

Export Citation Format

Share Document