scholarly journals Characterization and genetic potential of African pearl millet named landraces conserved at the ICRISAT genebank

2016 ◽  
Vol 15 (5) ◽  
pp. 438-452 ◽  
Author(s):  
H. D. Upadhyaya ◽  
K. N. Reddy ◽  
M. Irshad Ahmed ◽  
Senthil Ramachandran ◽  
Vinod Kumar ◽  
...  

AbstractThe world collection of pearl millet at ICRISAT genebank includes 19,696 landraces. Passport and characterization data of 2,929 accessions belonging to 89 named landraces originating in 15 countries of Africa was used to study the adoption pattern and genetic potential. Out of 89 named landraces under study, 71 were grown in one country, 11 in two countries, six in three countries and one in four countries. Latitude and prevailing climate at collection sites were found as the important determinants of cultivation pattern of landraces. A hierarchical cluster analysis using 12 agronomic traits resulted in five clusters. Cluster 1 for late flowering, short height in rainy season, high tillering and thin panicles; cluster 2 for early flowering; cluster 3 for stout panicles in both the seasons and larger seeds and cluster 5 for longer panicles in both seasons, were found as promising sources. IP 8957, IP 8958, IP 8964 of Iniadi landrace for short height, downy mildew and rust resistance and high seed iron and zinc contents; IP 17521 of Gnali (106.9 ppm) and IP 11523 of Idiyouwe (106.5 ppm) for high seed iron content; IP 17518 of Gnali (79.1 ppm) and IP 11535 of Iniadi (78.4 ppm) for high seed zinc content were the important sources. All accessions of Raa for high seed protein content (>15%) and those of Enele for drought tolerance, were found to be promising sources. Further evaluation of promising sources identified in this study is needed for enhanced utilization of germplasm in pearl millet improvement.

2017 ◽  
Vol 77 (1) ◽  
pp. 65 ◽  
Author(s):  
N. Anuradha ◽  
C. Tara Satyavathi ◽  
M. C. Meena ◽  
S. Mukesh Sankar ◽  
C. Bharadwaj ◽  
...  

Author(s):  
Avinash Kumar ◽  
Ashutosh Kumar ◽  
N. K. Singh ◽  
Rajesh Kumar ◽  
S. K. Singh ◽  
...  

In the present investigation, 10 parents and their 45 crosses (half diallel) along with 2 standard checks (Rajendra Nilam and Rajendra Mahsuri-1) were evaluated during Kharif, 2018 in Randomized Complete Block Design (RCBD) with 3 replications at Rice Farm Section, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Bihar. The objective of this study was to identify promising rice genotypes having desirable combination of morphological traits along with high grain iron and zinc content and high grain yield potential. The results of variability parameters indicated that ample amount of genetic variability was present for all the studied traits. Most of the traits showed high heritability coupled with high genetic advance indicating fruitfulness of selection for improvement of these traits. One genotype (P2×P7) with high grain iron (16.10 ppm) and grain zinc (26.40 ppm) content along with high yield (43.12 g/plant) was identified. Genotypes with high grain iron coupled with high grain yield (P7×P9, P8×P9, P5×P7 and P5×P9) and high  grain zinc content coupled with high grain yield (P4×P7, P9×P10, P8×P9 and P5×P7) were also identified. These promising genotypes identified can be used further in breeding programmes to obtain superior segregants with high grain micronutrient content and high grain yield.


Author(s):  
T. Shobha Rani ◽  
G. Anil Kumar ◽  
K. Sravanti ◽  
C.V. Sameer Kumar ◽  
S. Maheswaramma ◽  
...  

Pearl millet is traditionally a small grain crop, adapted to marginal environments. Micronutrient malnutrition arising from deficiency of one or more essential micronutrients. Crop biofortification is a sustainable and cost-effective approach to address micro nutrient malnutrition, especially in the developing world. It refers to the development of micronutrient-dense staple crops using conventional breeding practices. Availability of traits of concern in improved genetic background greatly enhances the breeding efficiency for the target trait combining with other desirable agronomic traits. The main objective of this study was to determine heterosis for Fe and Zn by using line x tester analysis. Low level of heterosis over mid-parent (MP) for grain Fe and Zn and no hybrid with significant heterosis over better-parent (BP) for Fe and Zn, suggested that there would be little opportunity, if any, to exploit heterosis for these traits. This would also mean that to breed high Fe and high Zn hybrids, these traits will have to breed into both parental lines of hybrids.Based on the results, it can be concluded that there are good prospects of genetic enhancement for grain Fe and Zn content ratio interm of hybrid development in pearl millet.


2018 ◽  
Vol 69 (11) ◽  
pp. 1092
Author(s):  
Tripti Singhal ◽  
C. Tara Satyavathi ◽  
Aruna Kumar ◽  
S. Mukesh Sankar ◽  
S. P. Singh ◽  
...  

Biofortification of lines of pearl millet (Pennisetum glaucum (L.) R.Br.) with increased iron (Fe) and zinc (Zn) will have great impact because pearl millet is an indispensable component of food and nutritional security of inhabitants of arid and semi-arid regions. The aim of the present study was to assess the stability of Fe and Zn content in recombinant inbred lines (RILs) developed for grain Fe and Zn content, and to use these lines in developing micronutrient-rich pearl millet hybrids. A mapping population consisting of 210 RILs along, with parents and checks, was assessed in three consecutive years (2014–16) under rainfed conditions at the same experimental location in an alpha design with two repetitions. Significant differences were observed in genotype, environment and genotype × environment interaction mean squares for all variables, particularly grain micronutrients. The first two principal components of an interaction principal component analysis cumulatively explained 100% of the total variation; respective contributions of the first and second components were 64.0% and 36.0% for Fe, and 58.1% and 41.9% for Zn. A positive and moderately high correlation (0.696**) between Fe and Zn contents suggests good prospects of simultaneous improvement for both micronutrients. Among the 210 RILs, RIL 69, RIL 186, RIL 191, RIL 149 and RIL 45 were found to be more stable with higher mean micronutrient content, additive main effects and multiplicative interaction stability value (ASV) and genotype selection index (GSI) under rainfed condition. These RILs are promising and can be tested further for their combining ability for yield as well as grain micronutrient content for developing superior biofortified, heterotic pearl millet hybrids.


2012 ◽  
Vol 47 (8) ◽  
pp. 1660-1668 ◽  
Author(s):  
Fatoumata Hama ◽  
Christèle Icard-Vernière ◽  
Jean-Pierre Guyot ◽  
Isabelle Rochette ◽  
Bréhima Diawara ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
N. Anuradha ◽  
C. Tara Satyavathi ◽  
C. Bharadwaj ◽  
T. Nepolean ◽  
S. Mukesh Sankar ◽  
...  

2007 ◽  
Vol 126 (2) ◽  
pp. 182-185 ◽  
Author(s):  
G. Velu ◽  
K. N. Rai ◽  
V. Muralidharan ◽  
V. N. Kulkarni ◽  
T. Longvah ◽  
...  

2020 ◽  
Vol 96 ◽  
pp. 103066
Author(s):  
Bassirou Sani Boubacar Gaoh ◽  
Prakash I. Gangashetty ◽  
Riyazaddin Mohammed ◽  
Daniel Kwadjo Dzidzienyo ◽  
Pangirayi Tongoona

Sign in / Sign up

Export Citation Format

Share Document