Generation mean analysis of pearl millet [Pennisetum glaucum (L.) R. Br.] grain iron and zinc contents and agronomic traits in West Africa

2020 ◽  
Vol 96 ◽  
pp. 103066
Author(s):  
Bassirou Sani Boubacar Gaoh ◽  
Prakash I. Gangashetty ◽  
Riyazaddin Mohammed ◽  
Daniel Kwadjo Dzidzienyo ◽  
Pangirayi Tongoona
2021 ◽  
Vol 12 ◽  
Author(s):  
P. Sanjana Reddy ◽  
C. Tara Satyavathi ◽  
Vikas Khandelwal ◽  
H. T. Patil ◽  
P. C. Gupta ◽  
...  

Pearl millet [Pennisetum glaucum (L.) R. Br.] is grown under both arid and semi-arid conditions in India, where other cereals are hard to grow. Pearl millet cultivars, hybrids, and OPVs (open pollinated varieties) are tested and released by the All India Coordinated Research Project on Pearl Millet (AICRP-PM) across three zones (A1, A, and B) that are classified based on rainfall pattern. Except in locations with extreme weather conditions, hybrids dominate pearl millet growing areas, which can be attributed to hybrid vigor and the active role of the private sector. The importance of OPVs cannot be ruled out, owing to wider adaptation, lower input cost, and timely seed availability to subsidiary farmers cultivating this crop. This study was conducted to scrutinize the presently used test locations for evaluation of pearl millet OPVs across India, identify the best OPVs across locations, and determine the variation in grain Fe and Zn contents across locations in these regions. Six varieties were evaluated across 20 locations in A1 and A (pooled as A) and B zones along with three common checks and additional three zonal adapted checks in the respective zones during the 2019 rainy season. Recorded data on yield and quality traits were analyzed using genotype main effects and genotype × environment interaction biplot method. The genotype × environment (G × E) interaction was found to be highly significant for all the grain yield and agronomic traits and for both micronutrients (iron and zinc). However, genotypic effect (G) was four (productive tillers) to 49 (grain Fe content) times that of G × E interaction effect for various traits across zones that show the flexibility of OPVs. Ananthapuramu is the ideal test site for selecting pearl millet cultivars effectively for adaptation across India, while Ananthapuramu, Perumallapalle, and Gurugram can also be used as initial testing locations. OPVs MP 599 and MP 600 are identified as ideal genotypes, because they showed higher grain and fodder yields and stability compared with other cultivars. Iron and zinc concentration showed highly significant positive correlation (across environment = 0.83; p < 0.01), indicating possibility of simultaneous effective selection for both traits. Three common checks were found to be significantly low yielders than the test entries or zonal checks in individual zones and across India, indicating the potential of genetic improvement through OPVs.


2017 ◽  
Vol 16 (15) ◽  
pp. 782-790 ◽  
Author(s):  
ADEOTI Kifouli ◽  
DJEDATIN Gustave ◽  
EWEDJE Ebenezer ◽  
BEULE Thierry ◽  
SANTONI Sylvain ◽  
...  

2017 ◽  
Vol 77 (1) ◽  
pp. 65 ◽  
Author(s):  
N. Anuradha ◽  
C. Tara Satyavathi ◽  
M. C. Meena ◽  
S. Mukesh Sankar ◽  
C. Bharadwaj ◽  
...  

2016 ◽  
Vol 67 (12) ◽  
pp. 1223 ◽  
Author(s):  
Jyoti Kumari ◽  
Manas K. Bag ◽  
S. Pandey ◽  
S. K. Jha ◽  
S. S. Chauhan ◽  
...  

Evaluation of genetic diversity within germplasm collections and identification of trait-specific germplasm is a basic requirement for plant breeders. A total of 221 Indian pearl millet collections from the National Genebank were characterised and evaluated for 27 agro-morphological descriptors. Considerable variation was observed for all characters. Frequency distribution analysis showed predominance of cylindrical and compact spike, grey seeds, earliness (less than 40 days to spike emergence). Hierarchical clustering method was used for classifying 221 pearl millet accessions based on agronomic and disease resistance traits, which resulted into three clusters. Clusters 1, 2 and 3 comprised 91, 54 and 76 accessions respectively. There was high correspondence between the geographic collection sites of accessions and their inclusion in particular clusters. In addition, principal component analysis was used for data reduction and generating biplot. First four principal components explained 66.43% of total variability. Among the traits analysed, plant height, nodes/plant, days to spike emergence, number of tillers, leaf width and leaf length are major contributor towards phenotypic diversity. Further the trait-specific germplasm were identified for agronomic traits, disease resistance, popping and antioxidants activity, namely for earliness (IC343664, IC343689, IC343661, IC309064), spike girth (IC283693, IC283842, IC367638), dual purpose with high grain and fodder yield (IC283705, IC283745, IC283885 and IC335901 and so on). Four accessions of pearl millet germplasm viz., IC309064, IC393365, IC306465 and IC283866, were observed as multiple disease resistant. This study suggested that application of appropriate techniques and their interpretations provide more efficient way to identify potential accessions and improve the utilisation of germplasm collections in plant breeding.


Author(s):  
T. Shobha Rani ◽  
G. Anil Kumar ◽  
K. Sravanti ◽  
C.V. Sameer Kumar ◽  
S. Maheswaramma ◽  
...  

Pearl millet is traditionally a small grain crop, adapted to marginal environments. Micronutrient malnutrition arising from deficiency of one or more essential micronutrients. Crop biofortification is a sustainable and cost-effective approach to address micro nutrient malnutrition, especially in the developing world. It refers to the development of micronutrient-dense staple crops using conventional breeding practices. Availability of traits of concern in improved genetic background greatly enhances the breeding efficiency for the target trait combining with other desirable agronomic traits. The main objective of this study was to determine heterosis for Fe and Zn by using line x tester analysis. Low level of heterosis over mid-parent (MP) for grain Fe and Zn and no hybrid with significant heterosis over better-parent (BP) for Fe and Zn, suggested that there would be little opportunity, if any, to exploit heterosis for these traits. This would also mean that to breed high Fe and high Zn hybrids, these traits will have to breed into both parental lines of hybrids.Based on the results, it can be concluded that there are good prospects of genetic enhancement for grain Fe and Zn content ratio interm of hybrid development in pearl millet.


2021 ◽  
Author(s):  
Sonali Dutta ◽  
Felix T. Sattler ◽  
Anna Pucher ◽  
Drabo Inoussa ◽  
Ahmad Issaka ◽  
...  

Abstract Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important food-security crop to smallholder farmers in West Africa (WA). Breeding for high yield and stability is a major challenge in the harsh environments of WA but could be tackled by hybrid breeding. Knowledge of combining ability patterns and quantitative-genetic parameters is required for an efficient development of hybrid varieties. Hence, our objectives were to estimate the combining ability of seven genetically diverse Sahelian pearl millet populations from Senegal, Mali, Benin, Burkina Faso, Niger, Sudan and Nigeria and the heterosis and stability of their 42 diallel-derived population hybrids to inform pearl millet hybrid breeding. The genotypes were evaluated in six environments in WA in 2007. Grain yield (GY) exhibited an average panmictic mid-parent heterosis (PMPH) of 24%, ranging from -1.51% to 64.69%. General combining ability (GCA) was significant across test environments as reflected by high heritability estimates and high GCA:SCA variance ratios. Thus, early selection for parental per se performance would be rewarding. The parental population from Sudan (IP8679) had strongly negative GCA for GY. Its lack of adaptation contributed to the predominance of additive effects in the present germplasm set. Parental populations PE02987 (Senegal), PE05344 (Mali) and ICMV IS 92222 (Niger) showed large positive GCA for GY. Their offspring, especially PE02987 × PE05344 and Kapelga × ICMV IS 92222, exhibited a high and stable GY across all test environments. Tapping the regional pearl millet genetic diversity seems therefore beneficial for hybrid breeding to increase pearl millet productivity in WA.


2018 ◽  
Vol 69 (11) ◽  
pp. 1092
Author(s):  
Tripti Singhal ◽  
C. Tara Satyavathi ◽  
Aruna Kumar ◽  
S. Mukesh Sankar ◽  
S. P. Singh ◽  
...  

Biofortification of lines of pearl millet (Pennisetum glaucum (L.) R.Br.) with increased iron (Fe) and zinc (Zn) will have great impact because pearl millet is an indispensable component of food and nutritional security of inhabitants of arid and semi-arid regions. The aim of the present study was to assess the stability of Fe and Zn content in recombinant inbred lines (RILs) developed for grain Fe and Zn content, and to use these lines in developing micronutrient-rich pearl millet hybrids. A mapping population consisting of 210 RILs along, with parents and checks, was assessed in three consecutive years (2014–16) under rainfed conditions at the same experimental location in an alpha design with two repetitions. Significant differences were observed in genotype, environment and genotype × environment interaction mean squares for all variables, particularly grain micronutrients. The first two principal components of an interaction principal component analysis cumulatively explained 100% of the total variation; respective contributions of the first and second components were 64.0% and 36.0% for Fe, and 58.1% and 41.9% for Zn. A positive and moderately high correlation (0.696**) between Fe and Zn contents suggests good prospects of simultaneous improvement for both micronutrients. Among the 210 RILs, RIL 69, RIL 186, RIL 191, RIL 149 and RIL 45 were found to be more stable with higher mean micronutrient content, additive main effects and multiplicative interaction stability value (ASV) and genotype selection index (GSI) under rainfed condition. These RILs are promising and can be tested further for their combining ability for yield as well as grain micronutrient content for developing superior biofortified, heterotic pearl millet hybrids.


2012 ◽  
Vol 47 (8) ◽  
pp. 1660-1668 ◽  
Author(s):  
Fatoumata Hama ◽  
Christèle Icard-Vernière ◽  
Jean-Pierre Guyot ◽  
Isabelle Rochette ◽  
Bréhima Diawara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document