scholarly journals A Scanning Probe Microscope in My Scanning Electron Microscope?

1995 ◽  
Vol 3 (2) ◽  
pp. 22-23
Author(s):  
George J. Collins

Scanning probe microscopes (SPMs) designed to fit into scanning elec- tron microscopes (SEMs) are now becoming commercially available and you might ask, "Why would I want to put an SPM in my SEM"? The primary reason is that the too forms of microscope are very complimentary. Each microscope extends the power of the other. The SEM can do things that are hard to do with an SPM, and vice versa.Not long after the introduction of the STM and the AFM, a few re- searchers built custom SPMs and installed them in their SEMs. The reports of these projects to build hybrid microscopes and examples of the data they produced can be found in the scientific literature.

2003 ◽  
Vol 772 ◽  
Author(s):  
Yoshikazu Nakayama ◽  
Seiji Akita

AbstractWe have developed a series of processes for preparing carbon nanotube devices of probes and tweezers that operate in scanning probe microscope (SPM). The main developments are a nanotube cartridge where nanotubes are aligned at a knife-edge to be easily picked up one by one and a scanning-electron-microscope manipulator by which a nanotube is transferred from the nanotube cartridge onto a Si tip under observing its view.We have also developed the electron ablation of a nanotube to adjust its length and the sharpening of a multiwall nanotube to have its inner layer with or without an end cap at the tip. For the sharpening process, the free end of a nanotube protruded from the cartridge was attached onto a metal-coated Si tip and the voltage was applied to the nanotube. At a high voltage giving the saturation of current, the current decreased stepwise in the temporal variation, indicating the sequential destruction of individual nanotube layers. The nanotube was finally cut at the middle of the nanotube bridge, and its tip was sharpened to have an inner layer with an opened end. Moving up the cartridge before cutting enables us to extract the inner layer with an end cap.It is evidenced that the maximum current at each layer during the stepwise decrease depends on its circumference, and the force for extracting the inner layer with ∼ 5nm diameter is ∼ 4 nN.


2001 ◽  
Vol 706 ◽  
Author(s):  
Yoshikazu Nakayama ◽  
Seiji Akita

AbstractWe have developed a well-controlled method for manipulating carbon nanotubes. The first crucial process involved is to prepare a nanotube array, named nanotube cartridge. We have found the ac electrophoresis of nanotubes by which nanotubes are aligned at the knife-edge. The nanotubes used were multiwalled and prepared by an arc discharge with a relatively high gas temperature. The second important process is to transfer a nanotube from the nanotube cartridge onto a substrate in a scanning electron microscope. Using this method, we have developed nanotube tips and nanotube tweezers that operate in a scanning probe microscope. The nanotube probes have been applied for observation of biological samples and industrial samples to clarify their advantages. The nanotube tweezers have demonstrated their motion in scanning-electron-microscope and operated to carry nanomaterials in a scanning probe microscope.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


2015 ◽  
Vol 799-800 ◽  
pp. 125-129
Author(s):  
Mary Donnabelle L. Balela ◽  
April Alexa S. Lagarde ◽  
Stephen Jann A. Tamayo ◽  
Nikko S. Villareal ◽  
Ann Marielle Parreno

Zirconia (ZrO2) nanotubes were synthesized by anodization of zirconium (Zr) foil in NH4Fand (NH4)2SO4 aqueous solution. Different surface preparation methods (electropolishing and etching) were applied on the Zr foil prior to anodizaton. In addition, the anodization time and NH4F concentration were varied. The structure and morphologies of the nanotubes and their crystallinity were confirmed using scanning electron microscope and x-ray diffractometer, respectively. ZrO2 nanotubes with large diameters and thick walls were formed at lower NH4F concentration and longer anodization time. On the other hand, smaller nanotubes with thinner walls were produced when the NH4F concentration was increased. The synthesized nanotubes were predominantly tetragonal ZrO2 with small amounts of monoclinic ZrO2.


Zootaxa ◽  
2007 ◽  
Vol 1544 (1) ◽  
pp. 59-68 ◽  
Author(s):  
NA LI ◽  
BING-ZHONG REN ◽  
MIAO LIU

The types, numbers and distributions of antennal sensilla were studied in both male and female adults of eight Acrididae species in Northeast China using scanning electron microscope (SEM). Totally, there were thirteen types of sensilla found on the antennae. They were identified as trichoid sensilla (I, II), chaetic sensilla (I, II), basiconic sensilla (I, II, III, IV, V), cavity sensilla, coeloconic sensilla, boehm's bristles and paddle-shaped sensilla. The types of antennal sensilla in each Acrididae species ranged from nine to twelve. Each of the species had the same types of antennal sensilla in male and female, and males had more abundant basiconic sensilla, chaetic sensilla, coeloconic sensilla, cavity sensilla than females. Acrida cinerca had the largest total numbers of sensilla, and Euthystria lueifemora had the fewest. Boehm's bristles had a concentration in the base of the pedicel. Paddle-shaped sensilla had a concentration in the base of the scape. There were significant differences in the distribution of the other eleven types of sensilla.


Phytotaxa ◽  
2018 ◽  
Vol 373 (3) ◽  
pp. 169 ◽  
Author(s):  
YUE CAO ◽  
PAN YU ◽  
QINGMIN YOU ◽  
REX L. LOWE ◽  
DAVID M. WILLIAMS ◽  
...  

A new species of Tabularia, Tabularia sinensis, is described from the inland Poyang Lake (Jiangxi Province), the largest lake in China. The description is based on light and scanning electron microscope observations of valve and girdle elements. Given the diversity of forms in the genus, the relationships and status of the genus was investigated in the context of the other known species in the genus and to ascertain if Tabularia, as originally circumscribed, remains monophyletic.


Author(s):  
N. Ollier ◽  
G. Panczer ◽  
B. Champagnon ◽  
P. Jollivet

Abstract Two types of borosilicate leached SON68-type glasses were studied, one doped with uranium and the other with rare-earth element (Nd, Eu). Photoluminescence and cathodoluminescence properties of U doped samples have been correlated to microscopic features of the corroded glass. Nuclear analysis, Electronic Microprobe and Scanning Electron Microscope investigations revealed the heterogeneous composition of the gels with differentiated phases. Enriched U phases (crystallised or not) and phosphorus precipitated phases in rare earth gel have been detected.


Zootaxa ◽  
2009 ◽  
Vol 2093 (1) ◽  
pp. 1-36 ◽  
Author(s):  
ANNE HELENE S. TANDBERG ◽  
WIM VADER

This paper presents redescriptions of amphipods in the genus Metopa (Stenothoidae) in the type-collections of the Zoological Museum of Copenhagen. For Metopa clypeata and M. abyssalis we redescribe the type-specimens, for M. glacialis and M. groenlandica the redescriptions are based on new material and checked against the type-specimens. For all except M. abyssalis a combination of new line drawings and scanning electron microscope (SEM) pictures is provided, for M. abyssalis, line drawings only. A summary of the other species having earlier been designed to Metopa in the Copenhagen collections is given, with a list of their present taxonomic position.


Sign in / Sign up

Export Citation Format

Share Document