2012 Microscopy Today Innovation Awards

2012 ◽  
Vol 20 (5) ◽  
pp. 46-51

Microscopy Today congratulates the third annual group of Innovation Award winners. The ten innovations described below move several microscopy techniques forward: atomic force microscopy, transmission electron microscopy, light microscopy, scanning probe microscopy, electron microscopy, and analytical microscopy. These innovations will make imaging and analysis more powerful, more flexible, more productive, and easier to accomplish.

2004 ◽  
Vol 829 ◽  
Author(s):  
Peter Moeck ◽  
Mukes Kapilashrami ◽  
Arvind Rao ◽  
Kirill Aldushin ◽  
Jeahuck Lee ◽  
...  

ABSTRACTNominal PbSe nano-islands were grown in the Stranski-Krastanow mode on (111) oriented PbTe/BaF2 pseudo-substrates by molecular beam epitaxy (MBE). The number density and morphology of these islands were assessed by means of atomic force microscopy (AFM). Transmission electron microscopy (TEM) was employed to determine the strain state and crystallographic structure of these islands. On the basis of both AFM and TEM analyses, we distinguish between different groups of tensibly strained islands. The suggestion is made to use such nano-islands as part of nanometrology standards for scanning probe microscopy.


1998 ◽  
Vol 71 (3) ◽  
pp. 323-341 ◽  
Author(s):  
Jean-Baptiste Donnet

Abstract The present stand on the understanding of the role of fillers in elastomer compounds shall be reviewed and discussed. Unpublished results of our laboratory are also introduced in this review paper, particularly concerning silica observed by atomic force microscopy and scanning probe microscopy and recent transmission electron microscopy results concerning furnace carbon black and its inception and growth.


1995 ◽  
Vol 378 ◽  
Author(s):  
G. Kissinger ◽  
T. Morgenstern ◽  
G. Morgenstern ◽  
H. B. Erzgräber ◽  
H. Richter

AbstractStepwise equilibrated graded GexSii-x (x≤0.2) buffers with threading dislocation densities between 102 and 103 cm−2 on the whole area of 4 inch silicon wafers were grown and studied by transmission electron microscopy, defect etching, atomic force microscopy and photoluminescence spectroscopy.


2007 ◽  
Vol 189 (17) ◽  
pp. 6457-6468 ◽  
Author(s):  
Marco Plomp ◽  
J. Michael McCaffery ◽  
Ian Cheong ◽  
Xin Huang ◽  
Chetan Bettegowda ◽  
...  

ABSTRACT Spores of the anaerobic bacterium Clostridium novyi NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Toward this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of both dormant and germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled, and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers, as well as the underlying spore coat and undercoat layers, sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi NT, these studies document the presence of proteinaceous growth spirals in a biological organism.


Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 18 ◽  
Author(s):  
Jean-Marie Teulon ◽  
Christian Godon ◽  
Louis Chantalat ◽  
Christine Moriscot ◽  
Julien Cambedouzou ◽  
...  

Nanoparticles are defined as elementary particles with a size between 1 and 100 nm for at least 50% (in number). They can be made from natural materials, or manufactured. Due to their small sizes, novel toxicological issues are raised and thus determining the accurate size of these nanoparticles is a major challenge. In this study, we performed an intercomparison experiment with the goal to measure sizes of several nanoparticles, in a first step, calibrated beads and monodispersed SiO2 Ludox®, and, in a second step, nanoparticles (NPs) of toxicological interest, such as Silver NM-300 K and PVP-coated Ag NPs, Titanium dioxide A12, P25(Degussa), and E171(A), using commonly available laboratory techniques such as transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, dynamic light scattering, wet scanning transmission electron microscopy (and its dry state, STEM) and atomic force microscopy. With monomodal distributed NPs (polystyrene beads and SiO2 Ludox®), all tested techniques provide a global size value amplitude within 25% from each other, whereas on multimodal distributed NPs (Ag and TiO2) the inter-technique variation in size values reaches 300%. Our results highlight several pitfalls of NP size measurements such as operational aspects, which are unexpected consequences in the choice of experimental protocols. It reinforces the idea that averaging the NP size from different biophysical techniques (and experimental protocols) is more robust than focusing on repetitions of a single technique. Besides, when characterizing a heterogeneous NP in size, a size distribution is more informative than a simple average value. This work emphasizes the need for nanotoxicologists (and regulatory agencies) to test a large panel of different techniques before making a choice for the most appropriate technique(s)/protocol(s) to characterize a peculiar NP.


Sign in / Sign up

Export Citation Format

Share Document