Rheological Characteristics for Thin Film Elastohydrodynamic Lubrication

2005 ◽  
Vol 21 (2) ◽  
pp. 77-84 ◽  
Author(s):  
H.-M. Chu ◽  
R. T. Lee ◽  
S. Y. Hu ◽  
Y.-P. Chang

ABSTRACTThis paper uses three lubrication models to explore the differential phenomenon in the status of thin film lubrication (TFL). According to the viscous adsorption theory, the modified Reynolds equation for thin film elastohydrodynamic lubrication (TFEHL) is derived. In this theory, the film thickness between lubricated surfaces is simplified as three fixed layers across the film, and the viscosity and density of the lubricant vary with pressure in each layer. Under certain conditions, such as a rough or concentrated contact of a nominally flat surface, films may be of nanometer scale. The thin film elastohydrodynamic lubrication (EHL) analysis is performed on a surface forces (SF) model which includes van der waals and solvation forces. The results show that the proposed TFEHL model can reasonably calculate the film thickness and the average relative viscosity under thin film EHL. The adsorption layer thickness and the viscosity influence significantly the lubrication characteristics of the contact conjunction. The differences in pressure distribution and film shape between surface forces model and classical EHL model were obvious, especially in the Hertzian contact area. The solvation force has the greatest influence on pressure distribution.

2012 ◽  
Vol 67 (6-7) ◽  
pp. 412-418
Author(s):  
Li-Ming Chu ◽  
Jaw-Ren Lin ◽  
Jiann-Lin Chen

The effects of surface roughness and surface force on thin film elastohydrodynamic lubrication (TFEHL) circular contact problems are analyzed and discussed under constant load condition. The multi-level multi-integration (MLMI) algorithm and the Gauss-Seidel iterative method are used to simultaneously solve the average Reynolds type equation, surface force equations, the load balance equation, the rheology equations, and the elastic deformation equation. The simulation results reveal that the difference between the TFEHL model and the traditional EHL model increase with decreasing film thickness. The effects of surface forces become significant as the film thickness becomes thinner. The surface forces have obvious effects in the Hertzian contact region. The oscillation phenomena in pressure and film thickness come mainly from the action of solvation forces


2002 ◽  
Vol 124 (4) ◽  
pp. 811-814 ◽  
Author(s):  
Chaohui Zhang ◽  
Jianbin Luo ◽  
Shizhu Wen

In this paper, a viscosity modification model is developed which can be applied to describe the thin film lubrication problems. The viscosity distribution along the direction normal to solid surface is approached by a function proposed in this paper. Based on the formula, lubricating problem of thin film lubrication (TFL) in isothermal and incompressible condition is solved and the outcome is compared to the experimental data. In thin film lubrication, according to the computation outcomes, the lubrication film thickness is much greater than that in elastohydrodynamic lubrication (EHL). When the velocity is adequately low (i.e., film thickness is thin enough), the pressure distribution in the contact area is close to Hertzian distribution in which the second ridge of pressure is not obvious enough. The film shape demonstrates the earlobe-like form in thin film lubrication, which is similar to EHL while the film is comparatively thicker. The transformation relationships between film thickness and loads, velocities or atmosphere viscosity in thin film lubrication differ from those in EHL so that the transition from thin film lubrication to EHL can be clearly seen.


2016 ◽  
Vol 40 (5) ◽  
pp. 821-833
Author(s):  
Li-Ming Chu ◽  
Jaw-Ren Lin ◽  
Hsiang-Chen Hsu ◽  
Yuh-Ping Chang

The effects of surface forces (SF) and coated layers (CL) on pure squeeze elastohydrodynamic lubrication (EHL) motion of circular contacts are explored under constant load condition by using the finite difference method (FDM) and the Gauss–Seidel iteration method. The transient pressure profiles, surface force, film shapes, and elastic deformation during the pure squeeze process under various operating conditions in the TFEHL regime are discussed. The simulation results reveal that the difference between SFEHL model and EHL model is apparent as the film thickness is thinner than 5 nm. The oscillation phenomena in pressure and film thickness come mainly from the action of solvation forces. At contact region, the greater elastic modulus and smaller coating thicknesses, the greater pressure distribution, and the smaller film thickness. The film thicknesses are found reverse at outside the contact zone. At the exit region, i.e. the minimum film thickness region, it is valid that the greater the elastic modulus and the smaller the coating thicknesses, the greater the solvation pressure distribution. The effects of surface forces become significant as the film thickness becomes thinner.


2007 ◽  
Vol 23 (4) ◽  
pp. 359-366
Author(s):  
H.-M. Chu ◽  
Y.-P. Chang ◽  
W.-L. Li

AbstractThe modified Reynolds equation for power law fluid is derived from the viscous adsorption theory for thin film elastohydrodynamic lubrication (TFEHL). The differences between classical non-Newtonian EHL and non-Newtonian TFEHL are discussed. Results show that the proposed model can reasonably calculate the pressure distribution, the film thickness, the velocity distribution and the average viscosity under thin film lubrication. The thickness (δ), the viscosity (m1), and the flow index (n1) of the adsorption layer influence significantly the lubrication characteristics of the contact conjunction. Furthermore, the film thickness increases with the increase of n1 and the film thickness affected by m1 is greater than that affected by n1, but the effect of n1 produces a very small difference in the pressure distributions. In addition, the greater n1, the smaller the change of velocity distribution in the adsorption layer, and the greater the change of velocity distribution in the middle layer. The larger δ and n1, the larger the deviation on log (film thickness) vs. log (speed) produced in the very thin film regime. In the region of the flow index ratio between 1.0 and 1.3, the difference in film thickness is significant. When the flow index of the adsorption layer is 1.6 times greater than the flow index of the middle layer, the adsorption layer is generally looked upon as a “solid-like”.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Wei Pu ◽  
Jiaxu Wang ◽  
Ying Zhang ◽  
Dong Zhu

Numerical simulations of the elastohydrodynamic lubrication (EHL) have been conducted by many researchers, in which the entrainment velocity is usually parallel to one of the axes of Hertzian contact ellipse. However, in some engineering applications, such as the counterformal contacts in spiral bevel and hypoid gears, entraining velocity vector may have an oblique angle that could possibly influence the lubrication characteristics significantly. Also, a vast majority of gears operate in mixed EHL mode in which the rough surface asperity contacts and lubricant films coexist. These gears are key elements widely used for transmitting significant power in various types of vehicles and engineering machinery. Therefore, model development for the mixed EHL in elliptical contacts with an arbitrary entrainment angle is of great importance. In the present paper, a recently developed mixed EHL model is modified to consider the effect of arbitrary entraining velocity angle, and the model is validated by comparing its results with available experimental data and previous numerical analyses found in literature. Based on this, numerical simulations are conducted to systematically study the influence of entrainment angle on lubricant film thickness in wide ranges of speed, load, and contact ellipticity. The obtained results cover the entire lubrication spectrum from thick-film and thin-film lubrication all the way down to mixed and boundary lubrication. In addition, minimum film thickness prediction formula is also developed through curve-fitting of the numerical results.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Abd Alsamieh

Purpose The purpose of this paper is to study the behavior of a single ridge passing through elastohydrodynamic lubrication of point contacts problem for different ridge shapes and sizes, including flat-top, triangular and cosine wave pattern to get an optimal ridge profile. Design/methodology/approach The time-dependent Reynolds’ equation is solved using Newton–Raphson technique. Several shapes of surface feature are simulated and the film thickness and pressure distribution are obtained at every time step by simultaneous solution of the Reynolds’ equation and film thickness equation, including elastic deformation. Film thickness and pressure distribution are chosen to be the criteria in the comparisons. Findings The geometrical characteristics of the ridge play an important role in the formation of lubricant film thickness profile and the pressure distribution through the contact zone. To minimize wear, friction and fatigue life, an optimal ridge profile should have smooth shape with small ridge size. Obtained results are compared with other published numerical results and show a good agreement. Originality/value The study evaluates the performance of different surface features of a single ridge with different shapes and sizes passing through elastohydrodynamic of point contact problem in relation to film thickness and pressure profile.


2002 ◽  
Vol 125 (1) ◽  
pp. 76-90 ◽  
Author(s):  
Jiaxin Zhao ◽  
Farshid Sadeghi

In this paper, an isothermal study of the shut down process of elastohydrodynamic lubrication under a constant load is performed. The surface mean velocity is decreased linearly from the initial steady state value to zero. The details of the pressure and film thickness distributions in the contact area are discussed for the two stages of shut down process, namely the deceleration stage and the subsequent pure squeeze motion stage with zero entraining velocity. The nature of the balance between the pressure, the wedge and the squeeze terms in Reynolds equation enables an analytical prediction of the film thickness change on the symmetry line of the contact in the deceleration period, provided that the steady state central film thickness relationship with velocity is known. The results indicate that for a fixed deceleration rate, if the initial steady state surface mean velocity is large enough, the transient pressure and film thickness distributions in the deceleration period solely depend on the transient velocity. The pressure and film thickness at the end of the deceleration period are then the same and do not depend on the initial steady state velocity. From the same initial steady state velocity, larger deceleration rates provide higher central pressure increase, but also preserve a higher film thickness in the contact area at the end of the deceleration period. Later in the second stage when the axisymmetric pressure and film thickness patterns typical of pure squeeze motion form, the pressure distribution in the contact area resembles a Hertzian contact pressure profile with a higher maximum Hertzian pressure and a smaller Hertzian half contact width. As a result, the film thickness is close to a parabolic distribution in the contact area. The volume of the lubricant trapped in the contact area is then estimated using this parabolic film thickness profile.


2013 ◽  
Vol 281 ◽  
pp. 329-334
Author(s):  
Jun He ◽  
Huang Ping ◽  
Qian Qian Yang

In the present paper, a new method for measuring elastohydrodynamic lubrication (EHL) pressure in line contact is proposed, which is based on the photoelastic technique. The pressure distribution of EHL film and the inner stresses in the friction pairs are fundamental issues to carry out EHL research. The film thickness, pressure and temperature have been successfully obtained with solving the basic equations such as Reynolds equation and energy equation simultaneously or separately, with numerical model of EHL problem. The film thickness can be also measured with the optical interference technique. However, the pressure measurement is still a problem which has not been well solved yet, so as the inner stresses inside the friction pairs. With the experimental mechanics, the photoelastic technique is a possible method to be used for measuring the pressure distribution of EHL film and inner friction pair in the line contact. Therefore, A flat plastic disk and a steel roller compose the frictional pairs of the photoelastic pressure measuring rig with combining the monochromatic LED light source, polarizer CCD camera and stereomicroscope to form the whole pressure measuring system of the line contact EHL. The experimental results with the rig display the typical features of EHL pressure. This shows that the method is feasible to be used for measuring the pressure of EHL film and the inner stresses of the friction pairs in the line contact.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3689
Author(s):  
Run Du ◽  
Anying Zhang ◽  
Zhihua Du ◽  
Xiaoyu Zhang

We used the COMPASS forcefield to perform molecular dynamics (MD) simulation of a mixture composed of three alkanes as the lubricant for the thin-film lubrication. The viscosity of the lubrication film in the non-working state, the final film thickness, and density distribution were investigated. The results reveal that the viscosity error among different initial film thicknesses in the non-working state is within 5%, which confirms the applicability of the model and the forcefield. The viscosity decreases oscillating as temperature increases. Whatever the initial film thickness is, the film thickness change rate with respect to pressure load is almost the same. When pressure increases, the density peaks increase. As the initial film thickness increases, the normalized thicknesses of adsorption and ordered layers decrease. In nanoscale, the density predicted by the MD simulation is higher than the prediction of the Tait equation, even if the adsorption layers is excluded.


Sign in / Sign up

Export Citation Format

Share Document