A Theoretical Analysis of the Mixed Elastohydrodynamic Lubrication in Elliptical Contacts With an Arbitrary Entrainment Angle

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Wei Pu ◽  
Jiaxu Wang ◽  
Ying Zhang ◽  
Dong Zhu

Numerical simulations of the elastohydrodynamic lubrication (EHL) have been conducted by many researchers, in which the entrainment velocity is usually parallel to one of the axes of Hertzian contact ellipse. However, in some engineering applications, such as the counterformal contacts in spiral bevel and hypoid gears, entraining velocity vector may have an oblique angle that could possibly influence the lubrication characteristics significantly. Also, a vast majority of gears operate in mixed EHL mode in which the rough surface asperity contacts and lubricant films coexist. These gears are key elements widely used for transmitting significant power in various types of vehicles and engineering machinery. Therefore, model development for the mixed EHL in elliptical contacts with an arbitrary entrainment angle is of great importance. In the present paper, a recently developed mixed EHL model is modified to consider the effect of arbitrary entraining velocity angle, and the model is validated by comparing its results with available experimental data and previous numerical analyses found in literature. Based on this, numerical simulations are conducted to systematically study the influence of entrainment angle on lubricant film thickness in wide ranges of speed, load, and contact ellipticity. The obtained results cover the entire lubrication spectrum from thick-film and thin-film lubrication all the way down to mixed and boundary lubrication. In addition, minimum film thickness prediction formula is also developed through curve-fitting of the numerical results.

Author(s):  
Milan Omasta ◽  
Ivan Krupka ◽  
Martin Hartl

In general contact conditions, the surface velocities are variously oriented, thus the entrainment and sliding velocity act at different directions. The effects of magnitude and direction of the sliding velocity in elastohydrodynamic lubrication (EHL) circular contact have been investigated. Film thickness distribution has been obtained using thin-film colorimetric interferometry. It has been found that direction of sliding velocity with respect to entrainment velocity play a role in film thickness distribution, particularly at high slide-to-roll ratios. A superposition of the effects of a pure rolling and of an opposite sliding has been considered. The pure rolling condition creates typical horse-shoe shaped film, whereas under the opposite sliding condition (i.e. zero entrainment velocity) conical depression in the central area of Hertzian contact called “dimple” has been observed.


Author(s):  
M Kaneta ◽  
P Yang

Isothermal elastohydrodynamic lubrication (EHL) theory has brought the improvement in function, performance, and durability of machine elements with concentrated contacts. The main reason is that the theory can evaluate the lubrication characteristics, such as film thickness and pressure distributions, from the shape and size of contacting materials, lubricant viscosity at the entrance to the EHL conjunction, entrainment velocity, equivalent elastic modulus, and applied load. However, in order to estimate the film thickness and pressure distributions more accurately and to make clear the traction behaviour based on lubricant rheology, it is necessary to establish thermal EHL theory, which incorporates heat generation in the fluid film and heat transfer in the machine system on the foundation of isothermal EHL theory. The thermal conductivity of contact materials controls temperature in the fluid film and consequently the lubricant viscosity. Therefore, the EHL characteristics are affected remarkably by the thermal conductivity of contact materials. In this article, the effects of the thermal conductivity of contacting materials on the film thickness, pressure, and traction coefficient are described.


2005 ◽  
Vol 21 (2) ◽  
pp. 77-84 ◽  
Author(s):  
H.-M. Chu ◽  
R. T. Lee ◽  
S. Y. Hu ◽  
Y.-P. Chang

ABSTRACTThis paper uses three lubrication models to explore the differential phenomenon in the status of thin film lubrication (TFL). According to the viscous adsorption theory, the modified Reynolds equation for thin film elastohydrodynamic lubrication (TFEHL) is derived. In this theory, the film thickness between lubricated surfaces is simplified as three fixed layers across the film, and the viscosity and density of the lubricant vary with pressure in each layer. Under certain conditions, such as a rough or concentrated contact of a nominally flat surface, films may be of nanometer scale. The thin film elastohydrodynamic lubrication (EHL) analysis is performed on a surface forces (SF) model which includes van der waals and solvation forces. The results show that the proposed TFEHL model can reasonably calculate the film thickness and the average relative viscosity under thin film EHL. The adsorption layer thickness and the viscosity influence significantly the lubrication characteristics of the contact conjunction. The differences in pressure distribution and film shape between surface forces model and classical EHL model were obvious, especially in the Hertzian contact area. The solvation force has the greatest influence on pressure distribution.


2002 ◽  
Vol 124 (4) ◽  
pp. 811-814 ◽  
Author(s):  
Chaohui Zhang ◽  
Jianbin Luo ◽  
Shizhu Wen

In this paper, a viscosity modification model is developed which can be applied to describe the thin film lubrication problems. The viscosity distribution along the direction normal to solid surface is approached by a function proposed in this paper. Based on the formula, lubricating problem of thin film lubrication (TFL) in isothermal and incompressible condition is solved and the outcome is compared to the experimental data. In thin film lubrication, according to the computation outcomes, the lubrication film thickness is much greater than that in elastohydrodynamic lubrication (EHL). When the velocity is adequately low (i.e., film thickness is thin enough), the pressure distribution in the contact area is close to Hertzian distribution in which the second ridge of pressure is not obvious enough. The film shape demonstrates the earlobe-like form in thin film lubrication, which is similar to EHL while the film is comparatively thicker. The transformation relationships between film thickness and loads, velocities or atmosphere viscosity in thin film lubrication differ from those in EHL so that the transition from thin film lubrication to EHL can be clearly seen.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Tao He ◽  
Ning Ren ◽  
Dong Zhu ◽  
Jiaxu Wang

Efficiency and durability are among the top concerns in mechanical design to minimize environmental impact and conserve natural resources while fulfilling performance requirements. Today mechanical systems are more compact, lightweight, and transmit more power than ever before, which imposes great challenges to designers. Under the circumstances, some simplified analyses may no longer be satisfactory, and in-depth studies on mixed lubrication characteristics, taking into account the effects of 3D surface roughness and possible plastic deformation, are certainly needed. In this paper, the recently developed plasto-elastohydrodynamic lubrication (PEHL) model is employed, and numerous cases with both sinusoidal waviness and real machined roughness are analyzed. It is observed that plastic deformation may occur due to localized high pressure peaks caused by the rough surface asperity contacts, even though the external load is still considerably below the critical load determined at the onset of plastic deformation in the corresponding smooth surface contact. It is also found, based on a series of cases analyzed, that the roughness height, wavelength, material hardening property, and operating conditions may all have significant influences on the PEHL performance, subsurface von Mises stress field, residual stresses, and plastic strains. Generally, the presence of plastic deformation may significantly reduce some of the pressure spikes and peak values of subsurface stresses and make the load support more evenly distributed among all the rough surface asperities in contact.


2002 ◽  
Vol 125 (1) ◽  
pp. 76-90 ◽  
Author(s):  
Jiaxin Zhao ◽  
Farshid Sadeghi

In this paper, an isothermal study of the shut down process of elastohydrodynamic lubrication under a constant load is performed. The surface mean velocity is decreased linearly from the initial steady state value to zero. The details of the pressure and film thickness distributions in the contact area are discussed for the two stages of shut down process, namely the deceleration stage and the subsequent pure squeeze motion stage with zero entraining velocity. The nature of the balance between the pressure, the wedge and the squeeze terms in Reynolds equation enables an analytical prediction of the film thickness change on the symmetry line of the contact in the deceleration period, provided that the steady state central film thickness relationship with velocity is known. The results indicate that for a fixed deceleration rate, if the initial steady state surface mean velocity is large enough, the transient pressure and film thickness distributions in the deceleration period solely depend on the transient velocity. The pressure and film thickness at the end of the deceleration period are then the same and do not depend on the initial steady state velocity. From the same initial steady state velocity, larger deceleration rates provide higher central pressure increase, but also preserve a higher film thickness in the contact area at the end of the deceleration period. Later in the second stage when the axisymmetric pressure and film thickness patterns typical of pure squeeze motion form, the pressure distribution in the contact area resembles a Hertzian contact pressure profile with a higher maximum Hertzian pressure and a smaller Hertzian half contact width. As a result, the film thickness is close to a parabolic distribution in the contact area. The volume of the lubricant trapped in the contact area is then estimated using this parabolic film thickness profile.


2012 ◽  
Vol 67 (6-7) ◽  
pp. 412-418
Author(s):  
Li-Ming Chu ◽  
Jaw-Ren Lin ◽  
Jiann-Lin Chen

The effects of surface roughness and surface force on thin film elastohydrodynamic lubrication (TFEHL) circular contact problems are analyzed and discussed under constant load condition. The multi-level multi-integration (MLMI) algorithm and the Gauss-Seidel iterative method are used to simultaneously solve the average Reynolds type equation, surface force equations, the load balance equation, the rheology equations, and the elastic deformation equation. The simulation results reveal that the difference between the TFEHL model and the traditional EHL model increase with decreasing film thickness. The effects of surface forces become significant as the film thickness becomes thinner. The surface forces have obvious effects in the Hertzian contact region. The oscillation phenomena in pressure and film thickness come mainly from the action of solvation forces


1992 ◽  
Vol 114 (4) ◽  
pp. 779-784 ◽  
Author(s):  
M. Kaneta ◽  
T. Sakai ◽  
H. Nishikawa

The effects of surface kinematic conditions on micro-elastohydrodynamic lubrication (micro-EHL) are investigated under rolling and/or sliding point contact conditions using the optical interferometry technique. A long bump of chromium sputtered on the surface of a highly polished ball is used as a model asperity. It is shown that the film thickness distribution or the elastic deformation of the bump is influenced significantly by the surface kinematic conditions and the orientation of the bump. An interesting phenomenon is also found when contacting surfaces move with different speeds; the thin film formed on a transversely oriented bump existing at the entrance of the contact travels through the contact region at the average speed of the surfaces. The experimental results obtained qualitatively confirm published numerical simulations.


Author(s):  
Binbin Zhang ◽  
Jing Wang

In the current study, in order to obtain a thick film thickness under zero entrainment velocity at low surface velocity, the effects of ambient viscosity, pressure–viscosity index of the lubricant, and the surface waviness are investigated numerically based on a thermal elastohydrodynamic lubrication mathematical model. The increasing ambient viscosity and modest waviness can deepen the dimple by a stronger “temperature-viscosity wedge” effect. With the combined effect of ambient viscosity, pressure–viscosity index, and surface waviness, a small centralized dimple in smooth contact evolves into a big classical one together with the disappearance of the former thin droopy film thickness.


2012 ◽  
Vol 57 (3) ◽  
pp. 1-10 ◽  
Author(s):  
Zihni B. Saribay ◽  
Robert C. Bill ◽  
Edward C. Smith ◽  
Suren B. Rao

This paper investigates the nominal elastohydrodynamic lubrication (EHL) characteristics of the conjugate meshing face gears and predicts the mesh efficiency of the pericyclic transmission system. The meshing face-gear tooth geometries and meshing kinematics are modeled. Hertzian contact and the isothermal non-Newtonian lubricant film characteristics of the meshing face-gear pair are investigated. The friction coefficient is calculated with the effects of lubricant behavior and mesh kinematics. Finally, the pericyclic transmission efficiency is calculated as a function of friction coefficient, mesh loads, and mesh kinematics. The Hertzian contact behavior, film thickness, and friction coefficient values are simulated for an example fixed axis face-gear pair rotating at 1000 rpm with 3.4 kN-m torque. The EHL film thickness ranges from 0.1 to 0.25 μm in this example. The average friction coefficient is predicted as 0.05. The efficiencies of three different 24:1 reduction ratio 760 HP pericyclic transmission designs are investigated. The minimum and maximum efficiency in the given design space are 97% and 98.7%, respectively.


Sign in / Sign up

Export Citation Format

Share Document