The effect of biogas digestion on the environmental impact and energy balances in organic cropping systems using the life-cycle assessment methodology

2010 ◽  
Vol 25 (3) ◽  
pp. 204-218 ◽  
Author(s):  
Jens Michel ◽  
Achim Weiske ◽  
Kurt Möller

AbstractA life-cycle assessment (LCA) was carried out to compare the environmental performance of different organic cropping systems with and without digestion of slurry and crop residues. The aims of the present study are: (1) to compare the environmental performance of organic farming dairy systems with the currently prevalent animal housing systems [solid farmyard manure (FYM) versus liquid slurry] as the main reference systems; (2) to analyze the effect of the implementation of a biogas digestion system on the consumption of fossil fuels and production of electrical energy; (3) to quantify the effects of the implementation of a biogas digestion system on the environment; and (4) to compare the obtained net energy yields with other means of obtaining energy by using the farmland area. The considered impact categories are greenhouse gas (GHG) balances, acidification, eutrophication and groundwater pollution. LCA results indicated that total emissions in systems based on FYM are much higher than in liquid slurry systems for most of the considered impact categories. The benefits of digestion of stable wastes in comparison with the reference system without digestion are mainly (1) the net reduction of the emissions of GHG and (2) energy recovery from produced biogas, while the disadvantages can be higher emissions of NH3 after spreading. The effects of additional biogas digestion of biomass such as crop residues (e.g., straw of peas and cereals) and cover crops are: (1) an optimization of the N-cycle and therewith higher yields; (2) higher energy production per unit arable land; (3) a further reduction of the GHG balance; but (4) higher N-related environmental burdens like eutrophication and acidification. The offsets of fossil fuel emissions were the largest GHG sink in most of the biogas digestion systems. The inclusion of a biogas plant into organic cropping systems and the use of the available wastes for production of energy largely increased the overall productivity of the farming system and matched very well the basic principles of organic farming such as a high self-sufficiency of the cropping system and reducing as much as possible the environmental impact of farming.

2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


2019 ◽  
Vol 944 ◽  
pp. 1137-1143 ◽  
Author(s):  
Ke Wei Lu ◽  
Xian Zheng Gong ◽  
Bo Xue Sun ◽  
Qing Ding

Tungsten is an important strategic metal, widely used in cemented carbide manufacturing, steel industry, and other economic fields. The amount of tungsten resource consumed in China each year accounts for more than 80% of the world’s annual total consumption. The purpose of this study is to quantify the environmental impact of tungsten production in China through the method of LCA. The result shows that, regarding the contributions of impact categories, the normalized value of HTP is the largest one among various impact categories, which accounts for 35.39% of the total environmental impact, followed by AP, PMFP, GWP, MDP, FDP, and POFP, respectively. The results also show that, regarding the contributions of production processes, smelting process is the largest contributor to the environmental burden of tungsten production due to the crystallization and calcination reduction occurred in the smelting process consumes a large amount of electricity, followed by mining, beneficiation, and transportation, respectively. The major academic contribution of this paper to the existing literatures is that we employed process-based analysis method, which could improve the accuracy of the study and provide practical advices for tungsten enterprises to reduce the environmental impact.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6508
Author(s):  
Mona Kabus ◽  
Lars Nolting ◽  
Benedict J. Mortimer ◽  
Jan C. Koj ◽  
Wilhelm Kuckshinrichs ◽  
...  

We investigate the environmental impacts of on-board (based on alternating current, AC) and off-board (based on direct current, DC) charging concepts for electric vehicles using Life Cycle Assessment and considering a maximum charging power of 22 kW (AC) and 50 kW (DC). Our results show that the manufacturing of chargers provokes the highest contribution to environmental impacts of the production phase. Within the chargers, the filters could be identified as main polluters for all power levels. When comparing the results on a system level, the DC system causes less environmental impact than the AC system in all impact categories. In our diffusion scenarios for electric vehicles, annual emission reductions of up to 35 million kg CO2-eq. could be achieved when the DC system is used instead of the AC system. In addition to the environmental assessment, we examine economic effects. Here, we find annual savings of up to 8.5 million euros, when the DC system is used instead of the AC system.


Author(s):  
Shuyi Wang ◽  
Daizhong Su ◽  
You Wu ◽  
Zijian Chai

Abstract An approach for integrating life-cycle assessment (LCA) into the eco-design of lighting products was developed, and LCAs of five lighting products that are currently on the market were then carried out using this approach. Based on the results of these LCAs, the sustainability requests for lighting products were derived and embedded into the product design specification (PDS), thus ensuring that any product developed according to the PDS would have the desired eco-design features. A new sustainable lighting product was then designed according to the PDS and manufactured, after which the new product underwent LCA. Upon comparing the results of the LCA of the new product with the LCA results for the existing lighting products, the newly designed product was found to provide better environmental performance than the existing products (a 27–58% reduction in environmental impact).


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 532 ◽  
Author(s):  
Kari-Anne Lyng ◽  
Andreas Brekke

Upgraded biogas, also known as biomethane, is increasingly being used as a fuel for transport in several countries and is regarded as an environmentally beneficial option. There are, nevertheless, few studies documenting the environmental impacts of biogas as a transport fuel compared with the alternatives on the market. In this study, life cycle assessment (LCA) methodology was applied to compare the environmental performance of biogas used as a fuel for bus transport with natural gas, electricity fueled buses, biodiesel, and fossil diesel. A sensitivity analysis was performed for the biogas alternative to assess the importance of the underlying assumptions. The results show that biogas has a relatively low contribution to the environmental impact categories assessed. Emissions of greenhouse gases are dependent on assumptions such as system boundaries, transport distances and methane leakages.


Author(s):  
Alessandro Musacchio ◽  
Andrea Corona ◽  
Luca Cencioni ◽  
Angela Serra ◽  
Pietro Bartocci ◽  
...  

Abstract Nowadays environmental impact assessment of a new product is necessary to meet rising sustainability requirements also in the Oil & Gas and Power Generation markets, especially for industrial gas turbines. From the conceptual phase to the detailed design, engineer’s work is supported by a wide range of tools aimed to define and evaluate typical parameters such as performances, life and costs, etc. However, considering environmental impact aspects from the early stages of product development may not be easy if the involved engineers are not provided by a specific Life Cycle Assessment (LCA) knowledge. Scope of this paper is to introduce and explain the development of a methodology aimed to define and evaluate the Key Environmental Performance Factors (KEPF) during the whole design process. The proposed methodology enables easy and fast eco-design evaluations and supports sustainable design assessments. Preliminary analysis of the entire processes involved in gas turbine (GT) design and production as well as testing and commissioning phases were performed to evaluate which factors affect mostly the Carbon Footprint of each process, referred to their specific functional unit. Extrapolating the KEPF from Cradle-to-Gate LCA they can be combined with case-specific qualitative and quantitative information such as material selection, manufacturing processes, mass quantity, presence of coatings etc. to provide environmental assessments. A case study of LCA applied to a heavy-duty GT is presented to outline the relative weight of each KEPF.


2017 ◽  
Vol 8 (1) ◽  
pp. 57-66
Author(s):  
Tomasz Nitkiewicz ◽  
Agnieszka Ociepa-Kubicka

Abstract The article presents the activities of selected company - biomass manufacturer and user - with regard to environmental impact of biomass supply chain solutions. The biomass production facility of Biomass User Company is one of the most modern plant in Central Europe. It uses wooden and agricultural biomass to produce heat in biomass-fired steam boiler. The objective of the paper is to investigate the environmental impact with the use of life cycle assessment method. In our study, we define different scenarios for biomass transportation, concerning its supply as well as distribution. Life cycle assessment method is used to estimate environmental impact and to perform sensitivity analysis on transport modes, fuel mix structure and destination of self-cropped biomass. LCA ReCiPe endpoint indicator is used to measure environmental performance. As the results show, transport efforts are not significant factor while environmental impacts are concerned but are rather impact intensive type of activity and should be addressed with company environmental policies.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2433
Author(s):  
Jaroslav Bernas ◽  
Tereza Bernasová ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl ◽  
Gerhard Moitzi ◽  
...  

Winter cereal:legume intercropping is considered a sustainable arable farming system not only in temperate regions but also in Mediterranean environments. Previous studies have shown that with suitable crop stand composition, high grain yield can be achieved. In this study, a life cycle assessment (LCA) of the influence of sowing ratio and nitrogen (N) fertilization on grain nitrogen yield of oat (Avena sativa L.) and pea (Pisum sativum L.) in intercrops was performed to find the optimal design to achieve low environmental impact. This study compared the environmental impact of oat:pea intercrops using agricultural LCA. Monocrops of oat and pea and substitutive intercrops, which were fertilized with different levels of N, were compared. The system boundaries included all the processes from cradle to farm gate. Mass-based (grain N yield) and area-based (land demand for generating the same grain N yield) functional units were used. The results covered the impact categories related to the agricultural LCAs. The ReCiPe 2016 Midpoint and Endpoint characterization model was used for the data expression. According to the results, an unfertilized combination of oat and pea (50%:50%) had the lowest environmental impact in comparison with the other 14 assessed variants and selected impact categories. In the assessed framework, pea monocrops or intensively fertilized oat monocrops can also be considered as alternatives with relatively low impact on the environment. However, an appropriate grain N yield must be reached to balance the environmental impact resulting from the fertilizer inputs. The production and use of fertilizers had the greatest impact on the environment within the impact categories climate change, eutrophication, and ecotoxicity. The results indicated that high fertilizer inputs did not necessarily cause the highest environmental impact. In this respect, the achieved grain N yield level, the choice of allocation approach, the functional unit, and the data expression approach played dominant roles.


2019 ◽  
Vol 8 (5) ◽  
pp. 383 ◽  
Author(s):  
Toktam B. Tabrizi ◽  
Arianna Brambilla

Life Cycle Assessment (LCA), developed over 30 years ago, has been helpful in addressing a growing concern about the direct and indirect environmental impact of buildings over their lifetime. However, lack of reliable, available, comparable and consistent information on the life cycle environmental performance of buildings makes it very difficult for architects and engineers to apply this method in the early stages of building design when the most important decisions in relation to a building’s environmental impact are made. The LCA quantification method with need of employing complex tools and an enormous amount of data is unfeasible for small or individual building projects. This study discusses the possibility of the development of a tool that allows building designers to more easily apply the logic of LCA at the early design stage. Minimising data requirements and identifying the most effective parameters that promise to make the most difference, are the key points of simplification method. The conventional LCA framework and knowledge-based system are employed through the simplification process. Results of previous LCA studies in Australia are used as the specific knowledge that enable the system to generate outputs based on the user’s inputs.Keywords: Life Cycle Assessment (LCA), early design stage, most effective parameters, life cycle environmental performance


Sign in / Sign up

Export Citation Format

Share Document