scholarly journals Challenging conservation agriculture on marginal slopes in Sehoul, Morocco

2013 ◽  
Vol 30 (3) ◽  
pp. 233-251 ◽  
Author(s):  
G. Schwilch ◽  
A. Laouina ◽  
M. Chaker ◽  
N. Machouri ◽  
M. Sfa ◽  
...  

AbstractIn Sehoul, Morocco, the use of marginal land for agriculture became a necessity for the local population due to increased poverty and the occupation of the best land by new owners. Desertification poses an additional threat to agricultural production on marginal slopes, which are often stony and degraded. In a participatory process embedded in the EU DESIRE research project, potential sustainable land management measures were selected to address land degradation and desertification. Promising experiences with no-tillage practices elsewhere in Morocco had motivated the Moroccan government to promote conservation agriculture throughout the country. This combination of crop rotation, minimal soil disturbance and soil cover maintenance, however, had not yet been tested on sloping degraded land. Field trials of grazing enclosure combined with no or minimum tillage were conducted on the plots of two farmers, and trial results were analyzed based on stakeholders’ criteria. Results suggest that increased soil cover with barley residues improved rainwater use efficiency and yields only slightly, although soil water was generally enhanced. Soil moisture measurements revealed that no-tillage was favorable mainly at soil depths of 5 cm and in connection with low-rainfall events (<20 mm); under these circumstances, moisture content was generally higher under no-tillage than under conventional tillage. Moreover, stakeholder discussion confirmed that farmers in Sehoul remain primarily interested in animal husbandry and are reluctant to change the current grazing system. Implementation of conservation agriculture is thus challenged both by the degraded, sloping and stony nature of the land, and by the socio-economic circumstances in Sehoul.

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 974
Author(s):  
Rafael Blanco-Sepúlveda ◽  
Amilcar Aguilar-Carrillo ◽  
Francisco Lima

In conservation agriculture, the no-tillage cultivation system and the retention of permanent vegetal cover are crucial to the control of soil erosion by water. This paper analyses the cultivation of maize under no-tillage, with particular reference to the effect produced on soil erosion when weed control is performed by a hand tool (machete), which disturbs the surface of the soil, and to the behavior of the soil cover in these circumstances. The study area is located in the humid tropical mountains of northern Nicaragua (Peñas Blancas Massif Nature Reserve). The results obtained show that 59.2% of the soil surface was affected by appreciable levels of sheet and splash erosion, although the vegetal cover of the soil was relatively high (with average weed and litter cover of 33.9% and 33.8%, respectively). The use of machetes for weed control provoked considerable soil disturbance, which explained the high rates of erosion observed. Moreover, this form of soil management disturbs the litter layer, making it less effective in preventing erosion. The litter remains loose on the soil surface, and so an increase in soil cover does not achieve a proportionate reduction in the area affected by erosion; thus, even with 80–100% weed and litter cover, 42% of the cultivated area continued to present soil erosion.


1988 ◽  
Vol 2 (3) ◽  
pp. 323-326 ◽  
Author(s):  
Kurt D. Thelen ◽  
James J. Kells ◽  
Donald Penner

Field trials were conducted in 1985 and 1986 to determine the effect of incorporation on volatilization of clomazone from soil. Volatilization was detected up to 2 weeks after surface-applied or soil-incorporated treatments of clomazone at 1.1 kg ai/ha. The amount of volatilization detected was greatest following rainfall and varied between years. More clomazone volatilized after surface application than after incorporation, regardless of the climatic conditions present. Clomazone volatilization detected was in the order of no-tillage > minimum tillage > conventional tillage.


2015 ◽  
Vol 31 (1) ◽  
pp. 72-85 ◽  
Author(s):  
Joséphine Peigné ◽  
Marion Casagrande ◽  
Vincent Payet ◽  
Christophe David ◽  
F. Xavier Sans ◽  
...  

AbstractThe interest of organic farmers in adopting conservation agriculture principles, including minimal soil disturbance, permanent soil cover and crop rotation has been growing since the early 2000s. However, currently there is no network for organic farmers practicing conservation agriculture, and a lack of knowledge on how organic farmers implement conservation agriculture in practice. Consequently, few technical references are available for organic farmers when they start applying conservation agriculture practices, in particular on controlling weeds without the use of herbicides. The main objectives of this study were: (1) to explore the diversity of conservation agriculture techniques (i.e., reduced tillage, no-tillage and green manures) practiced among European farmers, and (2) to identify farmers’ main strategies for implementing conservation agriculture and the agronomic and environmental factors that determine these strategies. Strategies were identified by analyzing survey results on: (1) the type and degree of use of conservation agriculture practices by farmers, and (2) the effects it produces in terms of soil disturbance and soil cover (low, medium and high). We carried out a survey of 159 European organic farmers and collected 125 data sets on management of winter-sown crops. Among the conservation agriculture practices, reduced tillage was used by 89%, no-tillage by 27% and green manure by 74% of the 159 interviewed farmers. Green manures were more frequently used in northern Europe than in the south (below 45°N). Most of the farmers used crop rotations, with a mean duration of 6 years. A wide diversity of conservation agriculture practices were used, with farmers rarely using all three techniques (no-till, reduced till and green manures) within one system. The range of practices was grouped into five strategies ranging from intensive non-inversion tillage without soil cover to very innovative techniques with no-tillage and intercrops. The five strategies for conservation agriculture could be grouped into two larger categories based on weed control approach: (1) intensification of the mechanical work without soil inversion or (2) biological regulation of weeds with cover crops. The diversity of strategies identified in this study shows that organic farmers use innovative approaches to implement conservation agriculture without herbicides. This study's findings will help organic farmers to experiment with innovative practices based on conservation agriculture principles and also benefit conventional farmers who use conservation agriculture practices and would like to reduce or eliminate the use of herbicides.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Blessing Mhlanga ◽  
Laura Ercoli ◽  
Elisa Pellegrino ◽  
Andrea Onofri ◽  
Christian Thierfelder

AbstractConservation agriculture has been promoted to sustainably intensify food production in smallholder farming systems in southern Africa. However, farmers have rarely fully implemented all its components, resulting in different combinations of no-tillage, crop rotation, and permanent soil cover being practiced, thus resulting in variable yield responses depending on climatic and soil conditions. Therefore, it is crucial to assess the effect of conservation agriculture components on yield stability. We hypothesized that the use of all three conservation agriculture components would perform the best, resulting in more stable production in all environments. We evaluated at, eight trial locations across southern Africa, how partial and full implementation of these components affected crop yield and yield stability compared with conventional tillage alone or combined with mulching and/or crop rotation. Grain yield and shoot biomass of maize and cowpea were recorded along with precipitation for 2 to 5 years. Across different environments, the addition of crop rotation and mulch to no-tillage increased maize grain by 6%, and the same practices added to conventional tillage led to 13% yield increase. Conversely, adding only mulch or crop rotation to no-tillage or conventional tillage led to lower or equal maize yield. Stability analyses based on Shukla’s index showed for the first time that the most stable systems are those in which mulch is added without crop rotation. Moreover, the highest yielding systems were the least stable. Finally, additive main effects and multiplicative interaction analysis allowed clarifying that mulch added to no-tillage gives stable yields on sandy soil with high rainfall. Similarly, mulch added to conventional tillage gives stable yield on sandy soil, but under low rainfall. This is the first study that highlighted the crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa, supporting their adaptability to climate change.


2021 ◽  
Author(s):  
Márton Dencső ◽  
Ágota Horel ◽  
Zsófia Bakacsi ◽  
Eszter Tóth

&lt;p&gt;Tillage practices influence soil CO&lt;sub&gt;2&lt;/sub&gt; emissions, hence many research investigate the long-term effects of conservation and conventional tillage methods e.g. ploughing and no-tillage on soil greenhouse gas emission.&lt;/p&gt;&lt;p&gt;The experiment site is an 18-years-old long-term tillage trial established on chernozem soil. During 2020, we took weekly CO&lt;sub&gt;2 &lt;/sub&gt;emission measurements in the mouldboard ploughing (MP), no-tillage (NT), and shallow cultivation (SC) treatments Tillage depth was 26-30 cm, 12-16 cm and 0 cm in the cases of MP, SC and NT respectively. The experiment was under wither oat cultivation.&lt;/p&gt;&lt;p&gt;We investigated the similarity in the CO&lt;sub&gt;2&lt;/sub&gt; emission trends of SC to MP or NT treatments. Besides CO&lt;sub&gt;2&lt;/sub&gt; emission measurements, we also monitored environmental parameters such as soil temperature (Ts) and soil water content (SWC) in each treatment.&lt;/p&gt;&lt;p&gt;During the investigated year (2020 January - December) SC had higher annual mean CO&lt;sub&gt;2&lt;/sub&gt; emission (0.115&amp;#177;0.083 mg m&lt;sup&gt;-2&lt;/sup&gt; s&lt;sup&gt;-1&lt;/sup&gt;) compared to MP (0.099&amp;#177;0.089 mg m&lt;sup&gt;-2&lt;/sup&gt; s&lt;sup&gt;-1&lt;/sup&gt;) and lower compared to NT (0.119&amp;#177;0.100 mg m&lt;sup&gt;-2&lt;/sup&gt; s&lt;sup&gt;-1&lt;/sup&gt;). The difference of the CO&lt;sub&gt;2&lt;/sub&gt; emissions was significant between SC and MP (p&lt;0.05); however, it was not significant between SC and NT (p&gt;0.05) treatments. The Ts dependency of CO&lt;sub&gt;2&lt;/sub&gt; emission was moderate in all treatments. CO&lt;sub&gt;2&lt;/sub&gt; emissions were moderately depended on SWC in MP and SC, and there was no correlation between these parameters in NT.&lt;/p&gt;&lt;p&gt;The annual mean CO&lt;sub&gt;2&lt;/sub&gt; emission of the SC treatment was more similar to the NT, than to the MP treatment.&lt;/p&gt;


2019 ◽  
Vol 11 (17) ◽  
pp. 4522 ◽  
Author(s):  
Magdalena Ruiz ◽  
Encarna Zambrana ◽  
Rosario Fite ◽  
Aida Sole ◽  
Jose Luis Tenorio ◽  
...  

The increasing spread of conservation agriculture demands that the next generation of wheat varieties includes cultivars capable of maintaining satisfactory yields with lower inputs and under uncertain climate scenarios. On the basis of the genetic gains achieved during decades of selection oriented to yield improvements under conventional crop management, it is important that novel breeding targets are defined and addressed. Grain yield, yield-related traits, and phenological and morphological characteristics, as well as functional quality parameters have been analyzed for six varieties each of bread and durum wheat, under minimum tillage and no-tillage. During the three-year experiment, the climatic conditions at the field trial site were characterized by low rainfall, although different degrees of aridity—from moderate to severe—were experienced. Differences were found between these two soil management practices in regard to the varieties’ yield stability. A positive influence of no-tillage on traits related to grain and biomass yield was also evidenced, and some traits among the examined seemed involved in varietal adaptation to a particular non-conventional tillage system. The study also confirmed some breeding targets for improved performance of wheat genotypes in conservation agroecosystems. These traits were represented in the small set of traditional varieties analysed.


2018 ◽  
Vol 6 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Bibek Thapa ◽  
Keshab Raj Pande ◽  
Baburam Khanal ◽  
Santosh Marahatta

A field experiment was conducted to evaluate the effect of tillage practices, residue management and cropping system on soil properties at NMRP, Rampur, Chitwan from November 2015 to April 2016. The experiment was laid on Strip split design with combination of 12 different treatments i.e, zero tillage & conventional tillage as main plot in the strip, residue retention & residue removal as sub-plot factor and maize – wheat, maize + soybean – wheat & soybean – wheat cropping system as sub-sub plot factor. Three replications of the treatments were made. Soil sample before experiment and after harvest of wheat was taken (0-15cm). The experiment showed significant effect of zero tillage on organic carbon (2.169%) and on total soil nitrogen (0.112 %). Zero tillage with retention of residues is valuable tool for the conservation agriculture and helps in sustainability of soil however long-term research for the tillage management and residue retention should be conducted to highlight the major effects on change in properties of soil.Int. J. Appl. Sci. Biotechnol. Vol 6(2): 164-168 


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 186-194 ◽  
Author(s):  
John Cardina ◽  
Emilie Regnier ◽  
Kent Harrison

Soils from long-term tillage plots at three locations in Ohio were sampled to determine composition and size of weed seed banks following 25 yr of continuous no-tillage, minimum-tillage, or conventional-tillage corn production. The same herbicide was applied across tillage treatments within each year and an untreated permanent grass sod was sampled for comparison. Seed numbers to a 15-cm depth were highest in the no-tillage treatment in the Crosby silt loam (77 800 m–2) and Wooster silt loam (8400 m–2) soils and in the grass sod (7400 m–2) in a Hoytville silty clay loam soil. Lowest seed numbers were found in conventional-tillage plots in the Wooster soil (400 m–2) and in minimum-tillage plots in the Crosby (2200 m–2) and Hoytville (400 m–2) soils. Concentration of seeds decreased with depth but the effect of tillage on seed depth was not consistent among soil types. Number of weed species was highest in permanent grass sod (10 to 18) and decreased as soil disturbance increased; weed populations were lowest in conventional tillage in the Hoytville soil. Common lambsquarters, pigweeds, and fall panicum were the most commonly found seeds in all soils. Diversity indices indicated that increased soil disturbance resulted in a decrease in species diversity. Weed populations the summer following soil sampling included common lambsquarters, pigweeds, fall panicum, and several species not detected in the seed bank.


2015 ◽  
Vol 31 (5) ◽  
pp. 414-428 ◽  
Author(s):  
Christian Thierfelder ◽  
Leonard Rusinamhodzi ◽  
Peter Setimela ◽  
Forbes Walker ◽  
Neal S. Eash

AbstractConservation agriculture (CA) based on minimum soil disturbance, crop residue retention and crop rotations is considered as a soil and crop management system that could potentially increase soil quality and mitigate the negative effects of climate variability. When CA is combined with drought-tolerant (DT) maize varieties, farmers can reap the benefits of both—genetic improvement and sustainable land management. New initiatives were started in 2007 in Mozambique to test the two climate-smart agriculture technologies on farmers' fields. Long-term trends showed that direct seeded manual CA treatments outyielded conventional tillage treatments in up to 89% of cases on maize and in 90% of cases on legume in direct yield comparisons. Improved DT maize varieties outyielded the traditional control variety by 26–46% (695–1422 kg ha−1) on different tillage treatment, across sites and season. However a direct interaction between tillage treatment and variety performance could not be established. Maize and legume grain yields on CA plots in this long-term dataset did not increase with increased years of practice due to on-site variability between farmer replicates. It was evident from the farmers' choice that, beside taste and good milling quality, farmers in drought-prone environments considered the potential of a variety to mature faster more important than larger potential yields of long season varieties. Population growth, labor shortage to clear new land areas and limited land resources in future will force farmers to change toward more permanent and sustainable cropping systems and CA is a viable option to improve their food security and livelihoods.


2020 ◽  
Author(s):  
Deborah Linsler ◽  
Jacqueline Gerigk ◽  
Ilka Schmoock ◽  
Rainer Georg Jörgensen ◽  
Martin Potthoff

&lt;p&gt;Reduced tillage is assumed to be a suitable practice to maintain and promote microbial biomass and microbial activity in the soil. The microbial biomass in particular is considered as a sensitive indicator for detecting soil disturbances. The objective of this study was to quantify the influence of different tillage practices on microbial parameters in the soil. Furthermore, we analyzed the relation of those microbial parameters with site-specific conditions.&lt;/p&gt;&lt;p&gt;To get a deeper insight in that topic, soils from different fields of agricultural farms with different tillage practices in France (12 fields), Romania (15 fields) and Sweden (17 fields) were examined within the &amp;#8220;SoilMan project&amp;#8221;. The tillage practices were no-tillage (absence of any tillage), minimum tillage (non-inversion tillage for instance by chisel plough or cultivator) and conventional tillage (inversion tillage by ploughing), all of which were carried out for at least five years prior to sampling. Soil samples were taken in spring 2018 from all fields under winter wheat (Triticum aestivum) at three soil depths (0-10 cm, 10-20 cm, 20-30 cm). As microbial parameters we measured microbial biomass carbon and nitrogen contents, ergosterol contents (as proxy for fungi) and basal respiration rates. For site-specific conditions we measured soil organic carbon, total nitrogen and total phosphorus contents, texture, pH and the soil water content.&lt;/p&gt;&lt;p&gt;Results show that microbial biomass carbon and nitrogen were more affected by soil type and soil texture as well as climatic conditions (mean precipitation and temperature) than by tillage practices. For instance, an increased clay content had a positive effect on the microbial biomass and, in addition to the higher average annual temperature, explained the generally low values &amp;#8203;&amp;#8203;in France. The lack of inversion tillage primarily led to stratified levels of soil organic carbon, microbial biomass carbon and ergosterol contents, which can be explained by the lack of crop residue incorporation. There were hardly any differences in microbial indicators between the tillage intensities when looking at the whole of the sampled soil profile (0-30 cm). In France, the microbial biomass carbon / soil organic carbon ratio was lower for no-tillage than for conventional tillage, which may indicate, among other things, that the mechanically ground organic matter incorporated into the soil under conventional tillage was better colonized by microorganisms. However, this effect could not be confirmed in the other countries. The metabolic quotient was generally increased at the lowest sampled depth (20-30 cm), irrespective of the cultivation.&lt;/p&gt;&lt;p&gt;We can conclude that the soil tillage intensity influenced the distribution of microbial biomass carbon and soil organic carbon contents more strongly than the total amounts in the sampled soil profile and that the soil texture had a greater impact on microbial soil properties than the agricultural management practice.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document