scholarly journals Yield and Quality Performance of Traditional and Improved Bread and Durum Wheat Varieties under Two Conservation Tillage Systems

2019 ◽  
Vol 11 (17) ◽  
pp. 4522 ◽  
Author(s):  
Magdalena Ruiz ◽  
Encarna Zambrana ◽  
Rosario Fite ◽  
Aida Sole ◽  
Jose Luis Tenorio ◽  
...  

The increasing spread of conservation agriculture demands that the next generation of wheat varieties includes cultivars capable of maintaining satisfactory yields with lower inputs and under uncertain climate scenarios. On the basis of the genetic gains achieved during decades of selection oriented to yield improvements under conventional crop management, it is important that novel breeding targets are defined and addressed. Grain yield, yield-related traits, and phenological and morphological characteristics, as well as functional quality parameters have been analyzed for six varieties each of bread and durum wheat, under minimum tillage and no-tillage. During the three-year experiment, the climatic conditions at the field trial site were characterized by low rainfall, although different degrees of aridity—from moderate to severe—were experienced. Differences were found between these two soil management practices in regard to the varieties’ yield stability. A positive influence of no-tillage on traits related to grain and biomass yield was also evidenced, and some traits among the examined seemed involved in varietal adaptation to a particular non-conventional tillage system. The study also confirmed some breeding targets for improved performance of wheat genotypes in conservation agroecosystems. These traits were represented in the small set of traditional varieties analysed.

Author(s):  
Nadia Chaieb ◽  
Sonia Labidi ◽  
Sourour Ayed ◽  
Lassaad Mdellel ◽  
Abdelkarim Chiab ◽  
...  

One of the proposed solutions to face climate change impact and to maintain food production sustainability is conservation agriculture. This study tries to determinate the effect of conventional tillage (CT) and no tillage (NT) on secondary metabolites such as total phenolics content (TPC), total flavonoids content (TFC) and antioxidants capacity (DPPH %) in relation to natural mycorrhization of durum wheat during the tillering stage for three cultivation years. The experiment was conducted in a referential farm (Krib, Siliana, North West Tunisia). The results showed that TPC, TFC and DPPH% were not influenced by tillage system (T). However, cultivation year (Y) had a significant effect on the studied parameters independently of tillage system. In addition, for the first cultivation year, tillage system (T) had significantly influenced the mycorrhization rate (MR%) and NT presented the highest mycorrhization rate (24%). DPPH% showed high significant positive correlations with MR% and TPC. For partial correlation based on Tillage system, high positive correlations were noted between DPPH%, MR% and TPC.  Considering the partial correlation based on cultivation year, only a significant positive correlation between TPC and TFC was observed. In conclusion, durum wheat quality was not affected by tillage system and there are not reasons against no tillage adoption in this region for a sustainable wheat production.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2001
Author(s):  
Sadam Hussain ◽  
Saddam Hussain ◽  
Ru Guo ◽  
Muhammad Sarwar ◽  
Xiaolong Ren ◽  
...  

Human efforts to produce more food for increasing populations leave marks on the environment. The use of conventional agricultural practices, including intensive tillage based on the removal of crop residue, has magnified soil erosion and soil degradation. In recent years, the progressive increase in the concentration of greenhouse gases (GHGs) has created global interest in identifying different sustainable strategies in order to reduce their concentration in the atmosphere. Carbon stored in soil is 2–4 times higher than that stored in the atmosphere and four times more when compared to carbon stored in the vegetation. The process of carbon sequestration (CS) involves transferring CO2 from the atmosphere into the soil or storage of other forms of carbon to either defer or mitigate global warming and avoid dangerous climate change. The present review discusses the potential of soils in sequestering carbon and mitigating the accelerated greenhouse effects by adopting different agricultural management practices. A significant amount of soil organic carbon (SOC) could be sequestered by conversion of conventional tillage to conservation tillage. The most important aspect of conservation agriculture is thought to improve plant growth and soil health without damaging the environment. In the processes of climate change mitigation and adaptation, zero tillage has been found to be the most eco-friendly method among different tillage techniques. No-till practice is considered to enable sustainable cropping intensification to meet future agricultural demands. Although no-tillage suggests merely the absence of tillage, in reality, several components need to be applied to a conservation agriculture system to guarantee higher or equal yields and better environmental performance than conventional tillage systems.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Blessing Mhlanga ◽  
Laura Ercoli ◽  
Elisa Pellegrino ◽  
Andrea Onofri ◽  
Christian Thierfelder

AbstractConservation agriculture has been promoted to sustainably intensify food production in smallholder farming systems in southern Africa. However, farmers have rarely fully implemented all its components, resulting in different combinations of no-tillage, crop rotation, and permanent soil cover being practiced, thus resulting in variable yield responses depending on climatic and soil conditions. Therefore, it is crucial to assess the effect of conservation agriculture components on yield stability. We hypothesized that the use of all three conservation agriculture components would perform the best, resulting in more stable production in all environments. We evaluated at, eight trial locations across southern Africa, how partial and full implementation of these components affected crop yield and yield stability compared with conventional tillage alone or combined with mulching and/or crop rotation. Grain yield and shoot biomass of maize and cowpea were recorded along with precipitation for 2 to 5 years. Across different environments, the addition of crop rotation and mulch to no-tillage increased maize grain by 6%, and the same practices added to conventional tillage led to 13% yield increase. Conversely, adding only mulch or crop rotation to no-tillage or conventional tillage led to lower or equal maize yield. Stability analyses based on Shukla’s index showed for the first time that the most stable systems are those in which mulch is added without crop rotation. Moreover, the highest yielding systems were the least stable. Finally, additive main effects and multiplicative interaction analysis allowed clarifying that mulch added to no-tillage gives stable yields on sandy soil with high rainfall. Similarly, mulch added to conventional tillage gives stable yield on sandy soil, but under low rainfall. This is the first study that highlighted the crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa, supporting their adaptability to climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Su ◽  
Benoit Gabrielle ◽  
Damien Beillouin ◽  
David Makowski

AbstractConservation agriculture (CA) has been promoted to mitigate climate change, reduce soil erosion, and provide a variety of ecosystem services. Yet, its impacts on crop yields remains controversial. To gain further insight, we mapped the probability of yield gain when switching from conventional tillage systems (CT) to CA worldwide. Relative yield changes were estimated with machine learning algorithms trained by 4403 paired yield observations on 8 crop species extracted from 413 publications. CA has better productive performance than no-till system (NT), and it stands a more than 50% chance to outperform CT in dryer regions of the world, especially with proper agricultural management practices. Residue retention has the largest positive impact on CA productivity comparing to other management practices. The variations in the productivity of CA and NT across geographical and climatical regions were illustrated on global maps. CA appears as a sustainable agricultural practice if targeted at specific climatic regions and crop species.


2021 ◽  
Author(s):  
Laura Morales ◽  
María T Domínguez ◽  
Mª Belén Herrador ◽  
Engracia Madejón ◽  
Elena Fernández-Boy

<p>How climate change will affect soil functioning is a major concern, especially in Mediterranean agrosystems, where, according to climate change projections, the occurrence of extreme temperatures and drought events will be increased. The main objective of our experiment was to evaluate the effect of land management (tillage system) on soil resilience against a simulated dry-rewetting cycle. Soil samples were collected from an in-situ field experiment established in 2008 in the Guadalquivir Valley, where conservation agriculture practices have been tested. Three different land management practices under a typical Mediterranean wheat-legume rotation system were compared: 1) traditional tillage (TT), 2) minimum tillage (MT) and 3) no-tillage (NT). Following our hypothesis, conservation agriculture practices (reduced tillage and no-tillage) may allow a more mature soil microbial community by reducing soil perturbation, and this would result in higher resistance of soil functioning against drought periods. Soil enzyme activities (β-glucosidase, phosphatase, acetylglucosaminidase, aminopeptidase, and dehydrogenase activities), microbial functional diversity (Microresp method), and soil DNA concentration (as an index of microbial biomass) were analyzed in a base-line sampling. Afterwards, a dry-rewetting cycle was simulated under controlled conditions. 8 subsamples of 50g from each soil sample were hydrated to reach 70% of each soil water holding capacity (WHC) and kept in those conditions for a pre-incubation period of 15 days. After this period, half of the replicates were let dry for 12 days (drought), while the others were maintained at 70% WFC (controls). Finally, all replicates were rehydrated again to the initial water content during a 14 days rewetting period. During this cycle, soil respiration rates were periodically measured to study the evolution of soil microbial activity. Our results showed that initial respiration rates were slightly higher in MT compared to NT (p<0.1), likely due to higher organic C and N content in the MT soils. Drought extremely reduced respiration rates in the three treatments, but the results did not show a clear pattern among treatments. During the rewetting period, respiration rates were significantly higher in drought samples in comparison with the controls, while no significant differences were found for the land management treatments. Besides, land management practices did not have a significant effect on soil DNA concentration, functional diversity of the microbial community, or enzyme activities. To conclude, the absence of a clear effect of land management practices on soil resilience to drought may be due to the experimental conditions. An in-situ experiment will allow us to determine if tillage reduction enhances soil resilience to moisture stress.</p>


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 841 ◽  
Author(s):  
Costanza Ceccanti ◽  
Marco Landi ◽  
Daniele Antichi ◽  
Lucia Guidi ◽  
Luigi Manfrini ◽  
...  

The sustainability of current farming systems has been questioned in the last decades, especially in terms of the environmental impact and mitigation of global warming. Also, the organic sector, which is supposed to impact less on the environment than other more intensive systems, is looking for innovative solutions to improve its environmental sustainability. Promisingly, the integration of organic management practices with conservation agriculture techniques may help to increase environmental sustainability of food production. However, little is known about the possible impact of conservation agriculture on the content of bioactive compounds in cash crops. For this reason, a two-year rotation experiment used 7 cash crops (4 leafy vegetables and 3 fruit crops) to compare integrated (INT), organic farming (ORG), and organic no-tillage (ORG+) systems to evaluate the possible influence of cropping systems on the nutritional/nutraceutical values of the obtained fruits and leafy vegetables. The results pointed out specific responses based on the species as well as the year of cultivation. However, cultivation with the ORG+ cropping system resulted in effective obtainment of fruits and vegetables with higher levels of bioactive compounds in several cases (11 out 16 observations). The ORG+ cropping system results are particularly promising for leafy vegetable cultivation, especially when ORG+ is carried out on a multi-year basis. Aware that the obtained data should be consolidated with longer-term experiments, we conclude that this dataset may represent a good starting point to support conservation agriculture systems as a possible sustainable strategy to obtain products with higher levels of bioactive compounds.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 103-110 ◽  
Author(s):  
C. S. Tan ◽  
C. F. Drury ◽  
M. Soultani ◽  
I. J. van Wesenbeeck ◽  
H. Y. F. Ng ◽  
...  

Conservation tillage has become an attractive form of agricultural management practices for corn and soybean production on heavy textured soil in southern Ontario because of the potential for improving soil quality. A controlled drainage system combined with conservation tillage practices has also been reported to improve water quality. In Southwestern Ontario, field scale on farm demonstration sites were established in a paired watershed (no-tillage vs. conventional tillage) on clay loam soil to study the effect of tillage system on soil structure and water quality. The sites included controlled drainage and free drainage systems to monitor their effect on nitrate loss in the tile drainage water. Soil structure, organic matter content and water storage in the soil profile were improved with no-tillage (NT) compared to conventional tillage (CT). No-tillage also increased earthworm populations. No-tillage was found to have higher tile drainage volume and nitrate loss which were attributed to an increase in soil macropores from earthworm activity. The controlled drainage system (CD) reduced nitrate loss in tile drainage water by 14% on CT site and 25.5% on NT site compared to the corresponding free drainage system (DR) from May, 1995 to April 30, 1997. No-tillage farming practices are definitely enhanced by using a controlled drainage system for preventing excessive nitrate leaching through tile drainage. Average soybean yields for CT site were about 12 to 14% greater than the NT site in 1995 and 1996. However, drainage systems had very little effect on soybean yields in 1995 and 1996 due to extremely dry growing seasons.


1988 ◽  
Vol 2 (3) ◽  
pp. 323-326 ◽  
Author(s):  
Kurt D. Thelen ◽  
James J. Kells ◽  
Donald Penner

Field trials were conducted in 1985 and 1986 to determine the effect of incorporation on volatilization of clomazone from soil. Volatilization was detected up to 2 weeks after surface-applied or soil-incorporated treatments of clomazone at 1.1 kg ai/ha. The amount of volatilization detected was greatest following rainfall and varied between years. More clomazone volatilized after surface application than after incorporation, regardless of the climatic conditions present. Clomazone volatilization detected was in the order of no-tillage > minimum tillage > conventional tillage.


2014 ◽  
Vol 2 (3) ◽  
pp. 328-335
Author(s):  
Saugat Dahal ◽  
Tika Bahadur Karki ◽  
Lal Prasad Amgain ◽  
Birendra Kumar Bhattachan

With the aim of developing crop management technologies that reduce the yield gap of maize (Zea mays L.) in Nepal, a study was carried-out to determine whether the grain yield of maize could be manipulated through tillage, residue, and nutrient and weed management practices. The effect of tillage (conventional and no tillage), residue (residue retained and residue removed), fertilizer (recommended doses of fertilizer and farmers’ doses of fertilizer) and weed management practices (herbicide use and manual weeding) on phenology and grain yield of maize were investigated under maize-rice cropping system in Rampur, Nepal during 2013. The experimental results revealed that no tillage had significant effect on grain yield (6.64 Mg ha-1) and phenological parameters like days to silking, physiological maturity and seed fill duration. Similarly, residue retained treatment had significant effect on grain yield (7.02 Mg ha-1) and phenological parameters. Research dose of fertilizer had significant effect on phenological parameters and grain yield (8.42 Mg ha-1). However, weed management factor did not influence significantly on grain yield and phenological parameters. The grain yield increased in no tillage by 23.19% over conventional tillage, residue retained by 39.84% over residue removed, recommended doses of fertilizer by 132.60% over farmer dose of fertilizer. Thus, no tillage, residue retention, recommended doses of fertilizer and use of herbicide for weed management can be alternative technologies for sustainable higher grain yield. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.11001Int J Appl Sci Biotechnol, Vol. 2(3): 328-335  


2012 ◽  
Vol 58 (No. 12) ◽  
pp. 540-544 ◽  
Author(s):  
O. Mikanová ◽  
T. Šimon ◽  
M. Javůrek ◽  
M. Vach

 Soil quality and fertility are associated with its productivity, and this in turn is connected to the soil biological activity. To study these effects, well designed long-term field experiments that provide comprehensive data sets are the most applicable. Four treatments (tillage methods) were set up: (1) conventional tillage (CT); (2) no tillage (NT); (3) minimum tillage + straw (MTS), and (4) no tillage + mulch (NTM). Our objective was to assess the relationships between soil microbial characteristics and winter wheat yields under these different techniques of conservation tillage within a field experiment, originally established in 1995. The differences in average grain yields over time period 2002–2009 between the variants were not statistically significant. Organic carbon in the topsoil was higher in plots with conservation tillage (NT, MTS, and NTM), than in the conventional tillage plots. There was a statistically significant correlation (P ≤ 0.01) between the grain yields and organic C content in topsoil.  


Sign in / Sign up

Export Citation Format

Share Document