scholarly journals The magnetic field and its effects on the solar atmosphere in high resolution

2006 ◽  
Vol 2 (14) ◽  
pp. 30-40
Author(s):  
Alan M. Title

AbstractThe Sun's magnetic field is produced throughout the solar interior; it emerges and is dispersed by surface and subsurface flows, and then expands above the surface to dominate the structure of the corona. To resolve the effects of the magnetic field it is necessary to image the interior and measure its rotation and flow systems; track the responses of the magnetic fields to flows in the surface; and to follow the evolution of structures in the corona. Because the Sun is dynamic both high spatial and temporal resolution are essential. Because the Sun's magnetic field effects encompass the entire spherical exterior, the entire surface and outer atmosphere must be mapped. And because the magnetic field is cyclic high-resolution observations must be maintained over multiple cycles.

Author(s):  
Clare E. Parnell ◽  
Ineke De Moortel

Determining the heating mechanism (or mechanisms) that causes the outer atmosphere of the Sun, and many other stars, to reach temperatures orders of magnitude higher than their surface temperatures has long been a key problem. For decades, the problem has been known as the coronal heating problem, but it is now clear that ‘coronal heating’ cannot be treated or explained in isolation and that the heating of the whole solar atmosphere must be studied as a highly coupled system. The magnetic field of the star is known to play a key role, but, despite significant advancements in solar telescopes, computing power and much greater understanding of theoretical mechanisms, the question of which mechanism or mechanisms are the dominant supplier of energy to the chromosphere and corona is still open. Following substantial recent progress, we consider the most likely contenders and discuss the key factors that have made, and still make, determining the actual (coronal) heating mechanism (or mechanisms) so difficult.


1971 ◽  
Vol 43 ◽  
pp. 44-50 ◽  
Author(s):  
Thomas J. Janssens ◽  
Neal K. Baker

The Aerospace – NASA Videomagnetograph began operation one month ago, two years after components were ordered and construction began. The design grew out of a desire to obtain magnetic fields in real time using an optical filter. The aim was to study and analyze magnetic configurations and changes, quantitatively if possible, with high spatial and temporal resolution and as much sensitivity as possible. This instrument is restricted to the line-of-sight component of the magnetic field and is primarily intended for high resolution studies of selected regions of the sun. The rationale behind our approach is shown in the next section and the design details in the following.


1995 ◽  
Vol 149 ◽  
pp. 193-194
Author(s):  
Reiner Volkmer

AbstractIn order to obtain information on the magnetic field on the sun in two spatial dimensions, a spectro-polarimeter of high spatial, spectral, and temporal resolution was built in the German Vacuum Tower Telescope (VTT) at the Observatorio del Teide/Tenerife. The two-dimensional spectrometer in the VTT, using a Universal Birefringent Filter (UBF) and a Fabry-Perot Interferometer (FPI) to obtain narrow-band nltergrams with a spectral resolution of the order of 3.105 (approx. 22 mÅ at CE5; at 6303 Å) and a spatial resolution of 0.2 arcsec/pixel (Bendlin et al. 1992, Bendlin and Volkmer 1993), was extended to work as a spectropolarimeter for measuring Stokes-I and Stokes-V profiles.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


Author(s):  
S. Horiuchi ◽  
Y. Matsui

A new high-voltage electron microscope (H-1500) specially aiming at super-high-resolution (1.0 Å point-to-point resolution) is now installed in National Institute for Research in Inorganic Materials ( NIRIM ), in collaboration with Hitachi Ltd. The national budget of about 1 billion yen including that for a new building has been spent for the construction in the last two years (1988-1989). Here we introduce some essential characteristics of the microscope.(1) According to the analysis on the magnetic field in an electron lens, based on the finite-element-method, the spherical as well as chromatic aberration coefficients ( Cs and Cc ). which enables us to reach the resolving power of 1.0Å. have been estimated as a function of the accelerating As a result of the calculaton. it was noted that more than 1250 kV is needed even when we apply the highest level of the technology and materials available at present. On the other hand, we must consider the protection against the leakage of X-ray. We have then decided to set the conventional accelerating voltage at 1300 kV. However. the maximum accessible voltage is 1500 kV, which is practically important to realize higher voltage stabillity. At 1300 kV it is expected that Cs= 1.7 mm and Cc=3.4 mm with the attachment of the specimen holder, which tilts bi-axially in an angle of 35° ( Fig.1 ). In order to minimize the value of Cc a small tank is additionally placed inside the generator tank, which must serve to seal the magnetic field around the acceleration tube. An electron gun with LaB6 tip is used.


JETP Letters ◽  
2015 ◽  
Vol 101 (4) ◽  
pp. 228-231
Author(s):  
A. V. Karelin ◽  
O. Adriani ◽  
G. C. Barbarino ◽  
G. A. Bazilevskaya ◽  
R. Bellotti ◽  
...  

Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Nola Redd

Radio waves are providing a new way to probe the Sun and suggest that the magnetic field of its corona may be stronger than long thought.


2014 ◽  
Vol 9 (S307) ◽  
pp. 389-390
Author(s):  
Coralie Neiner ◽  

AbstractUVMag is a medium-size space telescope equipped with a high-resolution spectropolarimetrer working in the UV and visible domains. It will be proposed to ESA for a future M mission. It will allow scientists to study all types of stars as well as e.g. exoplanets and the interstellar medium. It will be particularly useful for massive stars, since their spectral energy distribution peaks in the UV. UVMag will allow us to study massive stars and their circumstellar environment (in particular the stellar wind) spectroscopically in great details. Moreover, with UVMag's polarimetric capabilities we will be able, for the first time, to measure the magnetic field of massive stars simultaneously at the stellar surface and in the wind lines, i.e. to completely map their magnetosphere.


Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This chapter discusses how there are four general factors that contribute to the Sun's potential role in variations in the Earth's climate. First, the fusion processes in the solar core determine the solar luminosity and hence the base level of radiation impinging on the Earth. Second, the presence of the solar magnetic field leads to radiation at ultraviolet (UV), extreme ultraviolet (EUV), and X-ray wavelengths which can affect certain layers of the atmosphere. Third, the variability of the magnetic field over a 22-year cycle leads to significant changes in the radiative output at some wavelengths. Finally, the interplanetary manifestation of the outer solar atmosphere (the solar wind) interacts with the terrestrial magnetic field, leading to effects commonly called space weather.


Sign in / Sign up

Export Citation Format

Share Document