scholarly journals New generation wide-fast-deep optical surveys: petabytes from the sky

2006 ◽  
Vol 2 (14) ◽  
pp. 590-590
Author(s):  
J. Anthony Tyson

Many fundamental problems in optical astronomy – from planetary science, galactic structure, optical transients, to large-scale structure and cosmology – could be addressed though the same data set with millions of exposures in superb seeing, in multiple passbands, to very faint magnitudes over a large area of sky. This capability is largely driven by technology. In a logical progression towards this scientific capability, several increasingly ambitious wide-field optical surveys are planned in the next few years. A uniform high quality database covering all these science areas would be an ideal match to the VO. The above utopian goal of simultaneous pursuit of parallel surveys is achievable, but it relies on the ability to image a wide field quickly and deeply, and it is a non-linear function of the camera+telescope étendue.

2005 ◽  
Vol 04 (03) ◽  
pp. 269-286 ◽  
Author(s):  
F. WATT ◽  
A. A. BETTIOL ◽  
J. A. VAN KAN ◽  
E. J. TEO ◽  
M. B. H. BREESE

To overcome the diffraction constraints of traditional optical lithography, the next generation lithographies (NGLs) will utilize any one or more of EUV (extreme ultraviolet), X-ray, electron or ion beam technologies to produce sub-100 nm features. Perhaps the most under-developed and under-rated is the utilization of ions for lithographic purposes. All three ion beam techniques, FIB (Focused Ion Beam), Proton Beam Writing (p-beam writing) and Ion Projection Lithography (IPL) have now breached the technologically difficult 100 nm barrier, and are now capable of fabricating structures at the nanoscale. FIB, p-beam writing and IPL have the flexibility and potential to become leading contenders as NGLs. The three ion beam techniques have widely different attributes, and as such have their own strengths, niche areas and application areas. The physical principles underlying ion beam interactions with materials are described, together with a comparison with other lithographic techniques (electron beam writing and EUV/X-ray lithography). IPL follows the traditional lines of lithography, utilizing large area masks through which a pattern is replicated in resist material which can be used to modify the near-surface properties. In IPL, the complete absence of diffraction effects coupled with ability to tailor the depth of ion penetration to suit the resist thickness or the depth of modification are prime characteristics of this technique, as is the ability to pattern a large area in a single brief irradiation exposure without any wet processing steps. p-beam writing and FIB are direct write (maskless) processes, which for a long time have been considered too slow for mass production. However, these two techniques may have some distinct advantages when used in combination with nanoimprinting and pattern transfer. FIB can produce master stamps in any material, and p-beam writing is ideal for producing three-dimensional high-aspect ratio metallic stamps of precise geometry. The transfer of large scale patterns using nanoimprinting represents a technique of high potential for the mass production of a new generation of high area, high density, low dimensional structures. Finally a cross section of applications are chosen to demonstrate the potential of these new generation ion beam nanolithographies.


Nano Letters ◽  
2012 ◽  
Vol 12 (2) ◽  
pp. 714-718 ◽  
Author(s):  
Kang Hyuck Lee ◽  
Hyeon-Jin Shin ◽  
Jinyeong Lee ◽  
In-yeal Lee ◽  
Gil-Ho Kim ◽  
...  

2021 ◽  
Vol 162 (6) ◽  
pp. 298
Author(s):  
Gary J. Hill ◽  
Hanshin Lee ◽  
Phillip J. MacQueen ◽  
Andreas Kelz ◽  
Niv Drory ◽  
...  

Abstract The Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) is undertaking a blind wide-field low-resolution spectroscopic survey of 540 deg2 of sky to identify and derive redshifts for a million Lyα-emitting galaxies in the redshift range 1.9 < z < 3.5. The ultimate goal is to measure the expansion rate of the universe at this epoch, to sharply constrain cosmological parameters and thus the nature of dark energy. A major multiyear Wide-Field Upgrade (WFU) of the HET was completed in 2016 that substantially increased the field of view to 22′ diameter and the pupil to 10 m, by replacing the optical corrector, tracker, and Prime Focus Instrument Package and by developing a new telescope control system. The new, wide-field HET now feeds the Visible Integral-field Replicable Unit Spectrograph (VIRUS), a new low-resolution integral-field spectrograph (LRS2), and the Habitable Zone Planet Finder, a precision near-infrared radial velocity spectrograph. VIRUS consists of 156 identical spectrographs fed by almost 35,000 fibers in 78 integral-field units arrayed at the focus of the upgraded HET. VIRUS operates in a bandpass of 3500−5500 Å with resolving power R ≃ 800. VIRUS is the first example of large-scale replication applied to instrumentation in optical astronomy to achieve spectroscopic surveys of very large areas of sky. This paper presents technical details of the HET WFU and VIRUS, as flowed down from the HETDEX science requirements, along with experience from commissioning this major telescope upgrade and the innovative instrumentation suite for HETDEX.


RSC Advances ◽  
2020 ◽  
Vol 10 (24) ◽  
pp. 14147-14153 ◽  
Author(s):  
Youngho Kim ◽  
Sang Hoon Lee ◽  
Seyoung Jeong ◽  
Bum Jun Kim ◽  
Jae-Young Choi ◽  
...  

We heat-treated an amorphous large-area WO3 thin film to synthesize high-density, high-quality WO3 nanorods.


1996 ◽  
Vol 420 ◽  
Author(s):  
Liyou Yang ◽  
M. Bennett ◽  
L. Chen ◽  
K. Jansen ◽  
J. Kessler ◽  
...  

AbstractSome of the significant steps in technological development for large-scale commercialization of amorphous silicon (a-Si:H) based multijunction photovoltaic modules are presented. These developments are establishing a high quality baseline process for manufacturing large-area ( ˜ 8 ft2) a-Si:H/a-SiGe:H tandem junction modules with improved stabilized conversion efficiency, throughput, yield, and reduced materials usage.


2006 ◽  
Vol 2 (14) ◽  
pp. 608-608
Author(s):  
Naoki Yasuda

The products of optical wide-field survey are very valuable for their own purposes like the studies of large scale structure of galaxies, evolution of galaxies, Galactic structure and so on. At the same time optical view of sky will provide basic reference for the observation at other wavelength ranges. For this reason Palomar all sky survey has been used for various astronomical studies over 50 years. Now in the era of electronic devices, digital archives, and powerful computer systems, modern observation will replace the Palomar all sky survey.


1996 ◽  
Vol 426 ◽  
Author(s):  
Liyou Yang ◽  
M. Bennett ◽  
L. Chen ◽  
K. Jansen ◽  
J. Kessler ◽  
...  

AbstractSome of the significant steps in technological development for large-scale commercialization of amorphous silicon (a-Si:H) based multijunction photovoltaic modules are presented. These developments are establishing a high quality baseline process for manufacturing large-area ( ∼ 8 ft2) a-Si:H/a-SiGe:H tandem junction modules with improved stabilized conversion efficiency, throughput, yield, and reduced materials usage.


2012 ◽  
Vol 8 (S288) ◽  
pp. 34-37
Author(s):  
Anna M. Moore ◽  
Yi Yang ◽  
Jianning Fu ◽  
Michael C. B. Ashley ◽  
Xiangqun Cui ◽  
...  

AbstractAt the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical observatories. The Gattini Dome A project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fisheye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R) and a long-pass red filter for the detection and monitoring of airglow emission. The system operated continuously throughout the 2009, and 2011 winter seasons and part-way through the 2010 season, recording long exposure images sequentially for each filter. We have in hand one complete winter-time dataset (2009) returned via a manned traverse. We present here the first measurements of sky brightness in the photometric V band, cloud cover statistics measured so far and an estimate of the extinction.


MRS Advances ◽  
2017 ◽  
Vol 2 (60) ◽  
pp. 3749-3754
Author(s):  
Maria Kim ◽  
Changfeng Li ◽  
Jannatul Susoma ◽  
Juha Riikonen ◽  
Harri Lipsanen

ABSTRACTNext-generation electronic devices are expected to demonstrate greater utility, efficiency and durability. Meanwhile, plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and variety of poly(para-xylylene) polymers enable transformational advantages to device shape, flexibility, weight, transparency and recyclability. Exhibiting a combination of outstanding mechanical, electrical, optical, and chemical properties of graphene with the plastic substrates could propose ideal material for the future flexible electronics. Chemical vapor deposition (CVD) allows cost-effective fabrication of a high-quality large-area graphene films, however, the critical issue is clean and noninvasive transfer of the films onto a desired substrate. The water-based delamination of CVD grown graphene on Cu can be considered as a “green” transfer process utilizing only hot deionized water. We investigated a method requiring only two essential steps: coating of 6-inch monolayer CVD graphene with transparent and flexible polymer, and Cu delamination in hot water. Proposed method is inexpensive, reproducible, environmentally friendly, waste-free and suitable for large-scale, high quality graphene. The transfer process demonstrated films with enhanced charge carrier mobility, high uniformity, free of mechanical defects, and sheet resistance as low as ∼50 Ω/sq with 96.5 % transparency at 550 nm wavelength.


2013 ◽  
Vol 6 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
Boudewijn van Leeuwen ◽  
László Henits ◽  
Minucsér Mészáros ◽  
Zalán Tobak ◽  
József Szatmári ◽  
...  

Abstract Inland excess water floodings are a common problem in the Carpathian Basin. Nearly every year large areas are covered by water due to lack of natural runoff of superfluous water. To study the development of this phenomenon it is necessary to determine where these inundations are occurring. This research evaluates different methods to classify inland excess water occurrences on a study area covering south-east Hungary and northern Serbia. The region is susceptible to this type of flooding due to its geographical circumstances. Three separate methods are used to determine their applicability to the problem. The methods use the same input data set but differ in approach and complexity. The input data set consists of a mosaic of RapidEye medium resolution satellite images. The results of the classifications show that all three methods can be applied to the problem and provide high quality satellite based inland excess water maps over a large area.


Sign in / Sign up

Export Citation Format

Share Document