scholarly journals A spectroscopic survey of late-type giants in the Milky Way disk and local halo substructure

2007 ◽  
Vol 3 (S248) ◽  
pp. 506-507
Author(s):  
A. A. Sheffield ◽  
S. R. Majewski ◽  
A. M. Cheung ◽  
C. M. Hampton ◽  
J. D. Crane ◽  
...  

AbstractWe report the results of a survey of late-type giants aimed at understanding the nature of the disk and nearby halo Galactic stellar populations. We have obtained medium resolution (2–4 Å) spectra for 749 late K and early M giants at mid-latitudes selected from the 2MASS catalog with the FOBOS system at Fan Mountain Observatory. These spectra provide radial velocities (RVs) at the 5 km s−1 level, spectroscopic [Fe/H] good to σ[Fe/H] = 0.25 dex, and information on the relative abundances of Mg/Fe and Na/Fe in these stars. Proper motions from UCAC2 are used to search for local substructures, in particular the leading arm of the Sagittarius tidal streamer passing through the solar neighborhood. The combined proper motions and RVs yield full 6D stellar space motions. We have, by way of kinematics, relatively cleanly isolated the thick disk from the typically high velocity substructures that compose the nearby halo.We find evidence for substructure in the kinematics and metallicities of local halo stars.

2015 ◽  
Vol 11 (S317) ◽  
pp. 288-289
Author(s):  
Emily C. Cunningham ◽  
Alis J. Deason ◽  
Puragra Guhathakurta ◽  
Constance M. Rockosi ◽  
Roeland P. van der Marel ◽  
...  

AbstractWe present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = −0.3−0.9+0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.


1998 ◽  
Vol 11 (1) ◽  
pp. 571-571
Author(s):  
M. Haywood ◽  
J. Palasi ◽  
A. Gómez ◽  
L. Meillon Dasgal

The Hipparcos catalogue provides an accurate and extensive sampling of the solar neighbourhood HR diagram. The morphology of this diagram depends on selection criteria of the catalogue such as the limiting magnitude, angular separation and on the characteristics of the stellar populations near the sun (space density, metallicity, star formation rate, etc). Since the Hipparcos data are so accurate, one needs to model precisely the different selection bias and, at the same time, parametrize models of the galactic stellar populations with sufficient flexibility that as much information as possible can be grasped from the catalogue. Comparisons between our model and the Hipparcos catalogue will be presented elsewhere. Since the quantity of information contained in the Hipparcoscatalogue is so important, models ought to be complex, and external contraints, obtained prior to any general comparison with the model, are welcome. A major factor that influences the distribution of the stars in the HR diagram is the metallicity. For the late type stars, the metallicity distribution can be best studied by re-analysing a volume-limited sample of stars from the catalogue.


2004 ◽  
Vol 217 ◽  
pp. 147-153
Author(s):  
B. D. Savage ◽  
B. P. Wakker ◽  
K. R. Sembach ◽  
P. Richter ◽  
M. Meade

We summarize the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study O VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo and beyond. Strong O VI absorption over the velocity range from −100 to 100 km s−1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The overall distribution of O VI can be described by a plane-parallel patchy absorbing layer with an average O VI mid-plane density of no(O VI) = 1.7×10−8 cm−3, an exponential scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. Approximately 60 percent of the sky is covered by high velocity O VI with |vLSR|>100 km s−1. This high velocity O VI traces a variety of phenomena in and near the Milky Way including outflowing material from the Milky Way, tidal interactions with the Magellanic Clouds, accretion of gas onto the Milky Way, and warm/hot gas interactions in a highly extended (>70 kpc) Galactic corona or with hot intergalactic gas in the Local Group.


1994 ◽  
Vol 161 ◽  
pp. 423-424
Author(s):  
I.N. Reid ◽  
S.R. Majewski

Starcounts remain one of the most effective methods of probing the structure of the Galactic stellar populations. However, studies of the distribution at large distances above the Plane demand accurate photometry extending to faint magnitudes (V > 20), and such datasets are still rare. We (Reid & Majewski 1993) have analyzed data from one field — Majewski's (1992) UJF observations of SA57, the North Galactic Pole field. Our results revealed significant discrepancies with the standard model of the Galaxy (see refs. in Reid & Majewski), notably a paucity in the number of halo stars by a factor of two and the presence of a factor of two more disk stars than predicted — sufficient stars that the disk is the majority stellar population, outnumbering halo stars 2:1 even at V = 21. Majewski et al. (1993) has obtained UJFN photographic data for several other fields, and Fig. 1 shows a preliminary comparison of these observations with the predictions of the best-fitting SA57 model. Given that none of the parameters have been modified, the agreement is surprisingly good.


2016 ◽  
Vol 12 (S328) ◽  
pp. 143-145
Author(s):  
Maruša Žerjal ◽  
Tomaž Zwitter ◽  
Gal Matijevič ◽  

AbstractThe catalog of 38,000 chromospherically active RAVE dwarfs represents one of the largest samples of young active solar-like and later-type single field stars in the Solar neighbourhood. It was established from the unbiased magnitude limited RAVE Survey using an unsupervised stellar classification algorithm based merely on stellar fluxes (Ca II infrared triplet). Using a newly-calibrated age-activity relation, ~15,000 active stars are estimated to be younger than 1 Gyr. Almost 2000 stars are presumably younger than ~100 Myr and possibly still in the pre-main sequence phase, the latter being supported by their significant offset from the main sequence in the NUV − V versus J − K space. 16,000 stars from the sample have positional and velocity vectors available (using TGAS parallaxes and proper motions and radial velocities from RAVE).


2018 ◽  
Vol 609 ◽  
pp. A79 ◽  
Author(s):  
M. R. Hayden ◽  
A. Recio-Blanco ◽  
P. de Laverny ◽  
S. Mikolaitis ◽  
G. Guiglion ◽  
...  

Context. There have been conflicting results with respect to the extent that radial migration has played in the evolution of the Galaxy. Additionally, observations of the solar neighborhood have shown evidence of a merger in the past history of the Milky Way that drives enhanced radial migration. Aims. We attempt to determine the relative fraction of stars that have undergone significant radial migration by studying the orbital properties of metal-rich ([Fe/H] > 0.1) stars within 2 kpc of the Sun. We also aim to investigate the kinematic properties, such as velocity dispersion and orbital parameters, of stellar populations near the Sun as a function of [Mg/Fe] and [Fe/H], which could show evidence of a major merger in the past history of the Milky Way. Methods. We used a sample of more than 3000 stars selected from the fourth internal data release of the Gaia-ESO Survey. We used the stellar parameters from the Gaia-ESO Survey along with proper motions from PPMXL to determine distances, kinematics, and orbital properties for these stars to analyze the chemodynamic properties of stellar populations near the Sun. Results. Analyzing the kinematics of the most metal-rich stars ([Fe/H] > 0.1), we find that more than half have small eccentricities (e< 0.2) or are on nearly circular orbits. Slightly more than 20% of the metal-rich stars have perigalacticons Rp> 7 kpc. We find that the highest [Mg/Fe], metal-poor populations have lower vertical and radial velocity dispersions compared to lower [Mg/Fe] populations of similar metallicity by ~10 km s-1. The median eccentricity increases linearly with [Mg/Fe] across all metallicities, while the perigalacticon decreases with increasing [Mg/Fe] for all metallicities. Finally, the most [Mg/Fe]-rich stars are found to have significant asymmetric drift and rotate more than 40 km s-1 slower than stars with lower [Mg/Fe] ratios. Conclusions. While our results cannot constrain how far stars have migrated, we propose that migration processes are likely to have played an important role in the evolution of the Milky Way, with metal-rich stars migrating from the inner disk toward to solar neighborhood and past mergers potentially driving enhanced migration of older stellar populations in the disk.


2018 ◽  
Vol 619 ◽  
pp. A4 ◽  
Author(s):  
Javier Alonso-García ◽  
Roberto K. Saito ◽  
Maren Hempel ◽  
Dante Minniti ◽  
Joyce Pullen ◽  
...  

Context. The inner regions of the Galaxy are severely affected by extinction, which limits our capability to study the stellar populations present there. The Vista Variables in the Vía Láctea (VVV) ESO Public Survey has observed this zone at near-infrared wavelengths where reddening is highly diminished. Aims. By exploiting the high resolution and wide field-of-view of the VVV images we aim to produce a deep, homogeneous, and highly complete database of sources that cover the innermost regions of our Galaxy. Methods. To better deal with the high crowding in the surveyed areas, we have used point spread function (PSF)-fitting techniques to obtain a new photometry of the VVV images, in the ZY JHKs near-infrared filters available. Results. Our final catalogs contain close to one billion sources, with precise photometry in up to five near-infrared filters, and they are already being used to provide an unprecedented view of the inner Galactic stellar populations. We make these catalogs publicly available to the community. Our catalogs allow us to build the VVV giga-CMD, a series of color-magnitude diagrams of the inner regions of the Milky Way presented as supplementary videos. We provide a qualitative analysis of some representative CMDs of the inner regions of the Galaxy, and briefly mention some of the studies we have developed with this new dataset so far.


2000 ◽  
Vol 180 ◽  
pp. 110-114
Author(s):  
Zi Zhu ◽  
Wenjing Jin

AbstractFrom Hipparcos proper motions, we have analyzed the local kinematics of the Milky Way from the young 0-B5 stars, classical Cepheids, and the late-type K-M giants. Comparing the derived results, the kinematical discrepancies between each subset of stars have been analyzed, and the possible reasons for the kinematical differences have been discussed.


1985 ◽  
Vol 106 ◽  
pp. 415-420
Author(s):  
Klaas S. De Boer

The detection in absorption lines of gas clouds outside the galactic plane at high velocities by Münch and Zirin (1961), high velocities then defined as velocities differing by more than 20 km/s from the LSR, showed that the space outside the Milky-Way disk contains not just stars. Of course, from a continuity argument it had been all along clear that some transition zone had to exist between the dense (relatively speaking) gas of the Milky-Way plane and the vast (almost) emptiness of intergalactic space. The presence of these clouds requires a mechanism to prevent their evaporation, and Spitzer (1956) proposed that dilute hot gas had to exist outside the Milky-Way disk reaching, in his hydrostatic-equilibrium model, temperatures of a few million K at several tens of kpc. These high temperatures led him to name these gases the Galactic Corona. Observational confirmation of the abundance of these cool clouds came from the measurements of 21-cm HI emission, but no one-to-one correspondence with clouds detected in the visual did appear (Habing 1969). For the majority of the high-velocity (HV) clouds (Hulsbosch 1978) no distances are known, and all of those are believed to exist as a gaseous halo with the halo stars. Thus our Milky Way appears to have outside the disk: a halo, a gaseous halo, and a corona.


2002 ◽  
Vol 187 ◽  
pp. 185-193
Author(s):  
Steven R. Majewski

I would like to focus on one aspect regarding the evolution of Galactic stellar populations that is particularly relevant to discussions at this symposium: Where were the sites of early star formation in the Galaxy? The large scatter in abundance ratios for metal poor stars suggests multiple early settings of star formation in the Milky Way. In this and other ways, interpretation of detailed stellar chemical abundance analyses are converging with those of spatial-kinematical analyses of field stars, star clusters and satellite galaxies.


Sign in / Sign up

Export Citation Format

Share Document