scholarly journals Hα imaging of X-ray sources in selected globular clusters with SOAR

2009 ◽  
Vol 5 (S266) ◽  
pp. 508-508
Author(s):  
Pawel Pietrukowicz

AbstractI present results of a search for cataclysmic variables (CVs) and chromospherically active binaries (ABs) as counterparts to X-ray sources detected with Chandra in six Galactic globular clusters (GCs): M 4, M 28, M 30, M 71, M 80, and NGC 6752. Binary systems play a critical role in the evolution of GCs, serving as an internal energy source countering the tendency of GC cores to collapse. Theoretical studies predict dozens of CVs in the cores of some GCs (e.g., 130 for M 28, 40 for M 30). A number of such binaries are also expected outside the core radius. However, few CVs are known so far in GCs. Using the 4.1m SOAR telescope, I have found 25 stars with Hα excess in the observed clusters. Six are candidate CVs, five are candidate active binaries. The other 14 objects with Hα excess are probably foreground/background stars or extragalactic sources.

2007 ◽  
Vol 3 (S246) ◽  
pp. 373-374
Author(s):  
M. Servillat ◽  
N. A. Webb ◽  
D. Barret ◽  
R. Cornelisse ◽  
A. Dieball ◽  
...  

AbstractWe report on XMM-Newton and Chandra observations of the globular cluster NGC 2808. We detect one quiescent low mass X-ray binary of the 3±1 expected, if these systems are formed through encounters, and we show evidence for the presence of 20±10 bright cataclysmic variables in the core with a luminosity above 4×1031 erg s−1. We also review the specific nature of cataclysmic variables in globular clusters with reference to recent VLT/FORS1 observations of a cataclysmic variable in M 22.


2011 ◽  
Vol 7 (S281) ◽  
pp. 186-189
Author(s):  
Koji Mukai ◽  
Jennifer L. Sokoloski ◽  
Thomas Nelson ◽  
Gerardo J. M. Luna

AbstractWe present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RNe candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.


2019 ◽  
Vol 14 (S351) ◽  
pp. 367-376
Author(s):  
Maureen van den Berg

AbstractThe features and make up of the population of X-ray sources in Galactic star clusters reflect the properties of the underlying stellar environment. Cluster age, mass, stellar encounter rate, binary frequency, metallicity, and maybe other properties as well, determine to what extent we can expect a contribution to the cluster X-ray emission from low-mass X-ray binaries, millisecond pulsars, cataclysmic variables, and magnetically active binaries. Sensitive X-ray observations withXMM-Newton and certainlyChandra have yielded new insights into the nature of individual sources and the effects of dynamical encounters. They have also provided a new perspective on the collective X-ray properties of clusters, in which the X-ray emissivities of globular clusters and old open clusters can be compared to each other and to those of other environments. I will review our current understanding of cluster X-ray sources, focusing on star clusters older than about 1 Gyr, illustrated with recent results.


1998 ◽  
Vol 76 (6) ◽  
pp. 869-872 ◽  
Author(s):  
Alfredo Mayall Simas ◽  
Joseph Miller ◽  
Petrônio Filgueiras de Athayade Filho

We have evaluated the experimental evidence relevant to the structure and character of mesoionic compounds, accumulated for more than 100 years and including X-ray diffraction studies. We have also evaluated relevant theoretical studies. All these, including our own extensive work, lead us to conclude that mesoionic compounds are not aromatic. According to our recent definition “mesoionic compounds are planar five-membered heterocyclic betaines with at least one side chain whose α-atom is also in the ring plane and with dipole moments of the order of 5 D. Electrons are delocalized over two regions separated by what are essentially single bonds. One region, which includes the a-atom of the side chain is associated with the HOMO and negative π-charge whereas the other is associated with the LUMO and positive π-charge.” Key words: mesoionic compounds, betaines, aromaticity.


2000 ◽  
Vol 177 ◽  
pp. 681-684 ◽  
Author(s):  
U. Geppert ◽  
D. Page ◽  
M. Colpi ◽  
T. Zannias

The interpretation of Soft–Gamma–Repeaters (SGRs) and Anomalous X–Ray Pulsars (AXPs) as Magnetars (Thompson & Duncan 1996) raises again the issue of the generation of the ultra–strong magnetic fields (MFs) in neutron stars (NSs) and the related question of where these fields are anchored: in the core, penetrating the whole star, or confined to the crust. Recently, Heyl & Kulkarni (1998) considered the magneto–thermal evolution of magnetars with a core field. Since the assumption of a crustal field is at least not in disagreement with the observations of isolated pulsars (Urpin & Konenkov 1997) and of NSs in binary systems (Urpin, Geppert & Konenkov 1998, Urpin, Konenkov & Geppert 1998), here we would like to address the question whether the observations of SGRs and AXPs can be interpreted as magnetars having a crustal MF. Given the strength of the MF in magnetars we take into account, in an approximate manner, the strongly non–linear Hall effect on its decay. We intend to provide a contribution to an unified picture of NS MF evolution based on the crustal field hypothesis.


1995 ◽  
Vol 163 ◽  
pp. 262-270
Author(s):  
A. M. Cherepashchuk

New spectrophotometric, photometric and polarimetric observations of V444 Cygni confirm the basic conclusion that the WN5 star has a small core radius (rc < 4 R⊙) and a high core temperature (Tc > 60 000 K), which are characteristic of massive helium stars. Values of rc < 3 — 6 R⊙ and Tc > 70 000 — 90 000 K for the core of the WN7 star in the Cygnus X-3 system agree well with this conclusion. A clumping structure of WR winds is suggested. X-ray observations of colliding winds in WR+O binaries suggest radial expansion and anomalous chemical composition of WR winds.


2019 ◽  
Vol 489 (4) ◽  
pp. 4783-4790 ◽  
Author(s):  
Kristen C Dage ◽  
Stephen E Zepf ◽  
Arash Bahramian ◽  
Jay Strader ◽  
Thomas J Maccarone ◽  
...  

ABSTRACT RZ2109 is the first of several extragalactic globular clusters shown to host an ultraluminous X-ray source. RZ2109 is particularly notable because optical spectroscopy shows it has broad, luminous [O iii] λλ4959,5007 emission, while also having no detectable hydrogen emission. The X-ray and optical characteristics of the source in RZ2109 make it a good candidate for being a stellar mass black hole accreting from a white dwarf donor (i.e. an ultracompact black hole X-ray binary). In this paper we present optical spectroscopic monitoring of the [O iii]5007 emission line from 2007 to 2018. We find that the flux of the emission line is significantly lower in recent observations from 2016 to 2018 than it was in earlier observations in 2007–2011. We also explore the behaviour of the emission line shape over time. Both the core and the wings of the emission line decline over time, with some evidence that the core declines more rapidly than the wings. However, the most recent observations (in 2019) unexpectedly show the emission line core rebrightening


1996 ◽  
Vol 165 ◽  
pp. 389-400
Author(s):  
Helen M. Johnston ◽  
Frank Verbunt ◽  
Günther Hasinger ◽  
Wolfram Bunk

X-ray sources in globular clusters fall into two categories: the “bright” sources, with LX ∼ 1036-1038 erg s−1, and the “dim” sources, with LX ≲ 1034.5 erg s−1. The bright sources are clearly associated with accreting neutron stars in binary systems. The nature of the dim sources, however, remains in doubt. We review recent observations of globular-cluster X-ray sources with the ROSAT satellite. ROSAT detected bright sources in M31 globular clusters and greatly increased the number of dim sources known in galactic globular clusters. We discuss what these new observations have taught us about the distribution and nature of such sources, their spectral properties, and their underlying luminosity function.


Author(s):  
Binyamin V Naiman ◽  
Efrat Sabach ◽  
Avishai Gilkis ◽  
Noam Soker

Abstract We simulate the evolution of binary systems with a massive primary star of 15M⊙ where we introduce an enhanced mass loss due to jets that the secondary star might launch, and find that in many cases the enhanced mass loss brings the binary system to experience the grazing envelope evolution (GEE) and form a progenitor of Type IIb supernova (SN IIb). The jets, the Roche lobe overflow (RLOF), and a final stellar wind remove most of the hydrogen-rich envelope, leaving a blue-compact SN IIb progenitor. In many cases without this jet-driven mass loss the system enters a common envelope evolution (CEE) and does not form a SN IIb progenitor. We use the stellar evolutionary code MESA binary and mimic the jet-driven mass loss with a simple prescription and some free parameters. Our results show that the jet-driven mass loss, that some systems have during the GEE, increases the parameter space for stellar binary systems to form SN IIb progenitors. We estimate that the binary evolution channel with GEE contributes about a quarter of all SNe IIb, about equal to the contribution of each of the other three channels, binary evolution without a GEE, fatal CEE (where the secondary star merges with the core of the giant primary star), and the single star channel.


2019 ◽  
Vol 490 (1) ◽  
pp. L76-L80 ◽  
Author(s):  
Rob Fender ◽  
Joe Bright ◽  
Kunal Mooley ◽  
James Miller-Jones

Abstract Accreting white dwarfs in binary systems known as cataclysmic variables (CVs) have in recent years been shown to produce radio flares during outbursts, qualitatively similar to those observed from neutron star and black hole X-ray binaries, but their ubiquity and energetic significance for the accretion flow has remained uncertain. We present new radio observations of the CV SS Cyg with Arcminute Microkelvin Imager Large Array, which show for the second time late-ouburst radio flaring, in 2016 April. This flaring occurs during the optical flux decay phase, about 10 d after the well-established early-time radio flaring. We infer that both the early- and late-outburst flares are a common feature of the radio outbursts of SS Cyg, albeit of variable amplitudes, and probably of all dwarf novae. We furthermore present new analysis of the physical conditions in the best-sampled late-outburst flare, from 2016 February, which showed clear optical depth evolution. From this we can infer that the synchrotron-emitting plasma was expanding at about 1 per cent of the speed of light, and at peak had a magnetic field of order 1 G and total energy content ≥1033 erg. While this result is independent of the geometry of the synchrotron-emitting region, the most likely origin is in a jet carrying away a significant amount of the available accretion power.


Sign in / Sign up

Export Citation Format

Share Document