scholarly journals The quite complex “Simple Stellar Populations” of globular clusters

2009 ◽  
Vol 5 (S268) ◽  
pp. 119-128
Author(s):  
Angela Bragaglia

AbstractThere is compelling observational evidence that globular clusters (GCs) are quite complex objects. A growing body of photometric results indicate that the evolutionary sequences are not simply isochrones in the observational plane -as believed until a few years ago- from the main sequence, to the subgiant, giant, and horizontal branches. The strongest indication of complexity comes however from the chemistry, from internal dispersion in iron abundance in a few cases, and in light elements (C, N, O, Na, Mg, Al, etc.) in all GCs. This universality means that the complexity is intrinsic to the GCs and is most probably related to their formation mechanisms. The extent of the variations in light elements abundances is dependent on the GC mass, but mass is not the only modulating factor; metallicity, age, and possibly orbit can play a role. Finally, one of the many consequences of this new way of looking at GCs is that their stars may show different He contents.

2015 ◽  
Vol 12 (S316) ◽  
pp. 328-333
Author(s):  
W. Chantereau ◽  
C. Charbonnel ◽  
G. Meynet

AbstractOur knowledge of the formation and early evolution of globular clusters (GCs) has been totally shaken with the discovery of the peculiar chemical properties of their long-lived host stars. Therefore, the interpretation of the observed Colour Magnitude Diagrams (CMD) and of the properties of the GC stellar populations requires the use of new stellar models computed with relevant chemical compositions. In this paper we use the grid of evolution models for low-mass stars computed by Chantereau et al. (2015) with the initial compositions of second-generation stars as predicted by the fast rotating massive stars scenario to build synthesis models of GCs. We discuss the implications of the assumed initial chemical distribution on 13 Gyr isochrones. We build population synthesis models to predict the fraction of stars born with various helium abundances in present day globular clusters (assuming an age of 13 Gyr). With the current assumptions, 61 % of stars on the main sequence are predicted to be born with a helium abundance in mass fraction, Yini, smaller than 0.3 and only 11 % have a Yini larger than 0.4. Along the horizontal branch, the fraction of stars with Yini inferior to 0.3 is similar to that obtained along the main sequence band (63 %), while the fraction of very He-enriched stars is significantly decreased (only 3 % with Yini larger than 0.38).


2020 ◽  
Vol 493 (2) ◽  
pp. 2195-2206
Author(s):  
Emanuele Bertone ◽  
Miguel Chávez ◽  
J César Mendoza

ABSTRACT We present an investigation of synthetic spectroscopic indices that can plausibly help in identifying the presence of multiple stellar populations in globular clusters. The study is based on a new grid of stellar model atmospheres and high-resolution (R  = 500 000) synthetic spectra, that consider chemical partitions that have been singled out in Galactic globular clusters. The data base is composed of 3472 model atmospheres and theoretical spectra calculated with the collection of Fortran codes DFSYNTHE, ATLAS9 and SYNTHE, developed by Robert L. Kurucz. They cover a range of effective temperature from 4300 to 7000 K, surface gravity from 2.0 to 5.0 dex and four different chemical compositions. A set of 19 spectroscopic indices were calculated from a degraded version (R  = 2500) of the theoretical spectra data set. The set includes five indices previously used in the context of globular clusters analyses and 14 indices that we have newly defined by maximizing the capability of differentiating the chemical compositions. We explored the effects of atmospheric parameters on the index values and identified the optimal spectral diagnostics that allow to trace the signatures of objects of different stellar populations, located in the main sequence, the red giant branch and the horizontal branch. We found a suitable set of indices, that mostly involve molecular bands (in particular NH, but also CH and CN), that are very promising for spectroscopically identifying multiple stellar populations in globular clusters.


2009 ◽  
Vol 5 (S268) ◽  
pp. 135-140 ◽  
Author(s):  
Thibaut Decressin ◽  
G. Meynet ◽  
C. Charbonnel

AbstractGlobular clusters exhibit peculiar chemical patterns where Fe and heavy elements are constant inside a given cluster while light elements (Li to Al) show strong star-to-star variations. This pattern can be explained by self-pollution of the intracluster gas by the slow winds of fast rotating massive stars. Besides, several main sequences have been observed in several globular clusters which can be understood only with different stellar populations with distinct He content. Here we explore how these He abundances can constrain the self-enrichment in globular clusters.


2006 ◽  
Vol 2 (14) ◽  
pp. 438-439
Author(s):  
Francesco R. Ferraro ◽  
Barbara Lanzoni

AbstractBlue stragglers stars (BSS) define a sparsely populated sequence extending to higher luminosity than the turnoff point of normal main sequence stars in the color magnitude diagrams of stellar aggregates, thus mimicking a rejuvenated (more massive) stellar population. The nature of these stars has been a puzzle for many years and their formation mechanism is not completely understood, yet. Two mechanisms have been proposed to produce BSS: (i) the mass transfer in binary systems; and ((ii) the merger of two stars induced by stellar interactions. In this contribution we schematically report on the main properties of BSS in globular clusters (GCs) in the light of the most recent photometric and spectroscopic observations. These results, combined with dynamical simulations, indicate that both the proposed formation mechanisms play an important role in the production of BSS in GCs.


2019 ◽  
Vol 486 (4) ◽  
pp. 5581-5599 ◽  
Author(s):  
Christina K Gilligan ◽  
Brian Chaboyer ◽  
Jeffrey D Cummings ◽  
Dougal Mackey ◽  
Roger E Cohen ◽  
...  

Abstract We present a multiple population search in two old Large Magellanic Cloud (LMC) Globular clusters, Hodge 11 and NGC 2210. This work uses data from the Advanced Camera for Surveys and Wide Field Camera 3 on the Hubble Space Telescope from programme GO-14164 in Cycle 23. Both of these clusters exhibit a broadened main sequence with the second population representing (20 ± ∼5) per cent for NGC 2210 and (30 ± ∼5) per cent for Hodge 11. In both clusters, the smaller population is redder than the primary population, suggesting CNO variations. Hodge 11 also displays a bluer second population in the horizontal branch, which is evidence for helium enhancement. However, even though NGC 2210 shows similarities to Hodge 11 in the main sequence, there does not appear to be a second population on NGC 2210’s horizontal branch. This is the first photometric evidence that ancient LMC Globular clusters exhibit multiple stellar populations.


2012 ◽  
Vol 10 (H16) ◽  
pp. 275-277
Author(s):  
Kim A. Venn

It seems that in the past decade, there have been two paradigm shifts regarding star clusters. Firstly, the observational evidence for multiple stellar populations requires more extended and often complex star formation histories in star clusters. Secondly, theoretical models that form globular clusters in dwarf galaxies that are accreted at very early epochs (z > 5) are able to reproduce the age-metallicity relations observed. For the accretion scenario to be viable, globular clusters should also resemble the chemistry of at least some dwarf galaxies.


2015 ◽  
Vol 12 (S316) ◽  
pp. 267-274 ◽  
Author(s):  
Anna F. Marino

AbstractMultiple stellar populations in the Milky Way globular clusters manifest themselves with a large variety. Although chemical abundance variations in light elements, including He, are ubiquitous, the amount of these variations is different in different globulars. Stellar populations with distinct Fe, C+N+O and slow-neutron capture elements have been now detected in some globular clusters, whose number will likely increase. All these chemical features correspond to specific photometric patterns. I review the chemical+photometric features of the multiple stellar populations in globular clusters and discuss how the interpretation of data is being more and more challenging. Very excitingly, the origin and evolution of globular clusters is being a complex puzzle to compose.


2019 ◽  
Vol 491 (1) ◽  
pp. 440-454 ◽  
Author(s):  
Long Wang ◽  
Pavel Kroupa ◽  
Koh Takahashi ◽  
Tereza Jerabkova

ABSTRACT Many possible scenarios for the formation of multiple stellar populations (MSPs) in globular clusters (GCs) have been discussed so far, including the involvement of asymptotic giant branch stars, fast-rotating main-sequence stars, very massive main-sequence stars and mass-transferring massive binaries based on stellar evolution modelling. But self-consistent, dynamical simulations of very young GCs are usually not considered. In this work, we perform direct N-body modelling of such systems with total masses up to 3.2 × 105 M⊙, taking into account the observationally constrained primordial binary properties, and discuss the stellar mergers driven both by binary stellar evolution and dynamical evolution of GCs. The occurrence of stellar mergers is enhanced significantly in binary-rich clusters such that stars forming from the gas polluted by merger-driven ejection/winds would appear as MSPs. We thus emphasize that stellar mergers can be an important process that connects MSP formation with star cluster dynamics, and that multiple MSP formation channels can naturally work together. The scenario studied here, also in view of a possible top-heavy initial mass function, may be particularly relevant for explaining the high mass fraction of MSPs (the mass budget problem) and the absence of MSPs in young and low-mass star clusters.


1991 ◽  
Vol 9 (1) ◽  
pp. 37-40 ◽  
Author(s):  
Mun-Suk Chun

AbstractInhomogeneities in globular clusters are reviewed with the observational evidence for chemical abundance variations from star to star in individual clusters and the large-scale structural variation of clusters. The reality of the radial colour gradient is tested in 47 Tuc (NGC 104). The result shows that the observed radial colour gradient comes from the integration of the calculated colours of individual stars. The cause of this radial colour variation is the result of the concentration of evolved stars and the reddening of the main sequence in the central region. We propose that the CNO abundance gradient in the early stage of a cluster’s formation is the interpretation of the observed radial colour gradient.


2019 ◽  
Vol 624 ◽  
pp. A24 ◽  
Author(s):  
Eugenio Carretta

Large star-to-star abundance variations are direct evidence of multiple stellar populations in Galactic globular clusters (GCs). The main and most widespread chemical signature is the anti-correlation of the stellar Na and O abundances. The interquartile range (IQR) of the [O/Na] ratio is well suited to quantifying the extent of the anti-correlation and to probe its links to global cluster parameters. However, since it is quite time consuming to obtain precise abundances from spectroscopy for large samples of stars in GCs, here we show empirical calibrations of IQR[O/Na] based on the O, Na abundances homogeneously derived from more than 2000 red giants in 22 GCs in our FLAMES survey. We find a statistically robust bivariate correlation of IQR as a function of the total luminosity (a proxy for mass) and cluster concentration c. Calibrated and observed values lie along the identity line when a term accounting for the horizontal branch (HB) morphology is added to the calibration, from which we obtained empirical values for 95 GCs. Spreads in proton-capture elements O and Na are found for all GCs in the luminosity range from MV = −3.76 to MV = −9.98. This calibration reproduces in a self-consistent picture the link of abundance variations in light elements with the He enhancements and its effect on the stellar distribution on the HB. We show that the spreads in light elements seem already to be dependent on the initial GC masses. The dependence of IQR on structural parameters stems from the well known correlation between c and MV, which is likely to be of primordial origin. Empirical estimates can be used to extend our investigation of multiple stellar populations to GCs in external galaxies, up to M 31, where even integrated light spectroscopy may currently provide only a hint of such a phenomenon.


Sign in / Sign up

Export Citation Format

Share Document