scholarly journals Modern exploration of Galileo's new worlds

2010 ◽  
Vol 6 (S269) ◽  
pp. 49-57
Author(s):  
Torrence V. Johnson

AbstractFour hundred years ago Galileo turned his telescope to the heavens and changed the way we view the cosmos forever. Among his discoveries in January of 1610 were four new ‘stars’, following Jupiter in the sky but changing their positions with respect to the giant planet every night. Galileo showed that these ‘Medicean stars’, as he named them, were moons orbiting Jupiter in the same manner that the Earth and planets revolve about the Sun in the Copernican theory of the solar system. Over the next three centuries these moons, now collectively named the Galilean satellites after their discoverer, remained tiny dots of light in astronomers' telescopes. In the latter portion of the twentieth century Galileo's new worlds became important targets of exploration by robotic spacecraft. This paper reviews the history of this exploration through the discoveries made by the Galileo mission from 1995 to 2003, setting the stage for on-going exploration in the new century.

1988 ◽  
Vol 7 (1) ◽  
pp. 38-47
Author(s):  
C. P. Snyman

In view of the principle of actualism the early history of the earth must be explained on the basis of present-day natural phenomena and the basic Laws of Nature. The study of the solar system leads to the conclusion that the planets were formed as by-products when the sun developed from a rotating cloud of cosmic gas and dust. The protoplanets or planetesimals could have accreted as a result of mutual collisions, during which they could have become partly molten so that they could differentiate into a crust, a mantle and a core on the basis of differences in density.


1881 ◽  
Vol 172 ◽  
pp. 491-535 ◽  

In previous papers on the subject of tidal friction I have confined my attention principally to the case of a planet attended by a single satellite. But in order to make the investigation applicable to the history of the earth and moon it was necessary to take notice of the perturbation of the sun. In consequence of the largeness of the sun’s mass it was not there requisite to make a complete investigation of the theory of a planet attended by a pair of satellites. In the first part of this paper the theory of the tidal friction of a central body attended by any number of satellites is considered.


Author(s):  
Owen Gingerich

In or around 1510 Nicolaus Copernicus, one of the sixteen directors of the northernmost Catholic diocese in Poland, invented the solar system. Wait a minute! you say. Wasn’t the sun always in the middle of the planets? But that wasn’t the way everyone else thought about it. Farmers, professors, priests, and school children all assumed the earth was solidly fixed in the middle of the cosmos. Every day the sun and stars revolved around the earth. The sun also moved, more slowly, in a path against the more distant stars so that it was higher in the sky in the summer and much lower in winter....


1974 ◽  
Vol 3 ◽  
pp. 489-489
Author(s):  
M. W. Ovenden

AbstractThe intuitive notion that a satellite system will change its configuration rapidly when the satellites come close together, and slowly when they are far apart, is generalized to ‘The Principle of Least Interaction Action’, viz. that such a system will most often be found in a configuration for which the time-mean of the action associated with the mutual interaction of the satellites is a minimum. The principle has been confirmed by numerical integration of simulated systems with large relative masses. The principle lead to the correct prediction of the preference, in the solar system, for nearly-commensurable periods. Approximate methods for calculating the evolution of an actual satellite system over periods ˜ 109 yr show that the satellite system of Uranus, the five major satellites of Jupiter, and the five planets of Barnard’s star recently discovered, are all found very close to their respective minimum interaction distributions. Applied to the planetary system of the Sun, the principle requires that there was once a planet of mass ˜ 90 Mθ in the asteroid belt, which ‘disappeared’ relatively recently in the history of the solar system.


Text Matters ◽  
2018 ◽  
pp. 229-243
Author(s):  
Alicja Piechucka

The article focuses on an analysis of Hart Crane’s essay “Note on the Paintings of David Siqueiros.” One of Crane’s few art-historical texts, the critical piece in question is first of all a tribute to the American poet’s friend, the Mexican painter David Siqueiros. The author of a portrait of Crane, Siqueiros is a major artist, one of the leading figures that marked the history of Mexican painting in the first half of the twentieth century. While it is interesting to delve into the way Crane approaches painting in general and Siqueiros’ oeuvre in particular, an analysis of the essay with which the present article is concerned is also worthwhile for another reason. Like many examples of art criticism—and literary criticism, for that matter—“Note on the Paintings of David Siqueiros” reveals a lot not only about the artist it revolves around, but also about its author, an artist in his own right. In a text written in the last year of his life, Hart Crane therefore voices concerns which have preoccupied him as a poet and which, more importantly, are central to modernist art and literature.


2021 ◽  
Author(s):  
Brian Piitz

This applied thesis is focused on the full cataloguing and contextualizing of a collection of one hundred and sixteen postcards at the Art Gallery of Ontario (AGO) depicting scenes of Toronto a the beginning of the twentieth century. Twenty-seven publishers representing international, national and regional manufacturers are identified with their imprint on the verso of the postcard. The applied thesis includes a literature survey discussing a rationale for the cataloguing of postcards, as well as a brief overview of the history of postcards and the history of the urbanization of the City of Toronto. A description and analysis of the AGO postcards provides information about the production cycle of postcards, the scope of commercial photography and the dissemination of photographic imagery in Toronto. The thesis also examines the way images were altered in the production cycle and the manner in which photographers and publishers exchanged photographs intended for postcard production.


2019 ◽  
Vol 2 (1) ◽  
pp. 27-35
Author(s):  
Anisa Nur Afida ◽  
Yuberti Yuberti ◽  
Mukarramah Mustari

Abstract: This study aims to determine the function of the sun in the perspective of science and al-Qur'an . The research method used is qualitative research methods with the type of research library (Library Research). This research applies data analysis technique of Milles and Huberman model, with steps: 1) data reduction; 2) data display; 3) verification. The result of this research is, the theories that science explain related to the function of the sun in accordance with what is also described in the Qur'an. Science explains that the sun as the greatest source of light for the earth can produce its own energy. This is explained in the Qur'an that the sun is described as siraj and dhiya' which means sunlight is sourced from itself, as the center of the solar system is not static but also moves this matter in the Qur'an explained in QS Yāsin verse 38, besides science and the Qur'an also equally explain that the sun can be made as a calculation of time.Abstrak: Penelitian ini bertujuan untuk mengetahui fungsi matahari dalam perspektif sains dan al-Qur’an..Metode penelitian yang digunakan yaitu metode penelitian kualitatif dengan jenis penelitian pustaka (Library Research). Penelitian ini menggunakan teknik analisis data model Milles dan Huberman, dengan langkah-langkah: 1) reduksi data; 2) display data; 3) verifikasi. Hasil dari penelitian ini yaitu, teori-teori yang sains jelaskan berkaitan dengan fungsi matahari sesuai dengan apa yang juga di jelaskan dalam al-Qur’an. Sains menjelaskan bahwa matahari sebagai sumber energi cahaya terbesar bagi bumi dapat menghasilkan energinya sendiri hal ini dijelaskan dalam al-Qur’an bahwa matahari dideskripsikan sebagai siraj dan dhiya’yang berarti sinar matahari bersumber dari dirinya sendiri, sebagai pusat tata surya matahari tidaklah statis melainkan juga bergerak hal ini dalam al-Qur’an di jelaskan dalam QS Yāsin ayat 38, selain itu sains dan al-Qur’an juga sama-sama menjelaskan bahwa matahari  dapat di jadikan sebagai perhitungan waktu serta petunjuk dari bayang-bayang.


2021 ◽  
Author(s):  
Brian Piitz

This applied thesis is focused on the full cataloguing and contextualizing of a collection of one hundred and sixteen postcards at the Art Gallery of Ontario (AGO) depicting scenes of Toronto a the beginning of the twentieth century. Twenty-seven publishers representing international, national and regional manufacturers are identified with their imprint on the verso of the postcard. The applied thesis includes a literature survey discussing a rationale for the cataloguing of postcards, as well as a brief overview of the history of postcards and the history of the urbanization of the City of Toronto. A description and analysis of the AGO postcards provides information about the production cycle of postcards, the scope of commercial photography and the dissemination of photographic imagery in Toronto. The thesis also examines the way images were altered in the production cycle and the manner in which photographers and publishers exchanged photographs intended for postcard production.


Author(s):  
Bradley L. Jolliff

Earth’s moon, hereafter referred to as “the Moon,” has been an object of intense study since before the time of the Apollo and Luna missions to the lunar surface and associated sample returns. As a differentiated rocky body and as Earth’s companion in the solar system, much study has been given to aspects such as the Moon’s surface characteristics, composition, interior, geologic history, origin, and what it records about the early history of the Earth-Moon system and the evolution of differentiated rocky bodies in the solar system. Much of the Apollo and post-Apollo knowledge came from surface geologic exploration, remote sensing, and extensive studies of the lunar samples. After a hiatus of nearly two decades following the end of Apollo and Luna missions, a new era of lunar exploration began with a series of orbital missions, including missions designed to prepare the way for longer duration human use and further exploration of the Moon. Participation in these missions has become international. The more recent missions have provided global context and have investigated composition, mineralogy, topography, gravity, tectonics, thermal evolution of the interior, thermal and radiation environments at the surface, exosphere composition and phenomena, and characteristics of the poles with their permanently shaded cold-trap environments. New samples were recognized as a class of achondrite meteorites, shown through geochemical and mineralogical similarities to have originated on the Moon. New sample-based studies with ever-improving analytical techniques and approaches have also led to significant discoveries such as the determination of volatile contents, including intrinsic H contents of lunar minerals and glasses. The Moon preserves a record of the impact history of the solar system, and new developments in timing of events, sample based and model based, are leading to a new reckoning of planetary chronology and the events that occurred in the early solar system. The new data provide the grist to test models of formation of the Moon and its early differentiation, and its thermal and volcanic evolution. Thought to have been born of a giant impact into early Earth, new data are providing key constraints on timing and process. The new data are also being used to test hypotheses and work out details such as for the magma ocean concept, the possible existence of an early magnetic field generated by a core dynamo, the effects of intense asteroidal and cometary bombardment during the first 500 million–600 million years, sequestration of volatile compounds at the poles, volcanism through time, including new information about the youngest volcanism on the Moon, and the formation and degradation processes of impact craters, so well preserved on the Moon. The Moon is a natural laboratory and cornerstone for understanding many processes operating in the space environment of the Earth and Moon, now and in the past, and of the geologic processes that have affected the planets through time. The Moon is a destination for further human exploration and activity, including use of valuable resources in space. It behooves humanity to learn as much about Earth’s nearest neighbor in space as possible.


Sign in / Sign up

Export Citation Format

Share Document