scholarly journals Search for the Star-Planet Interaction

2011 ◽  
Vol 7 (S282) ◽  
pp. 125-126
Author(s):  
Tereza Krejčová ◽  
Ján Budaj ◽  
Július Koza

AbstractWe analyse the chromospherical activity of stars with extrasolar planets and search for a possible correlation between the equivalent width of the core of the Ca II K line and orbital parameters of the planet. We found statistically significant evidence that the equivalent width of the Ca II K line reversal, which originates in the stellar chromosphere, depends on the orbital period Porb of the exoplanet. Planets orbiting stars with Teff < 5 500 K and with Porb < 20 days generally have much stronger emission than planets at similar temperatures but at longer orbital periods. Porb = 20 days marks a sudden change in behaviour, which might be associated with a qualitative change in the star-planet interaction.

Author(s):  
Tong Luo ◽  
Ming Xu

Two types of new orbital transfer strategies that use only-accelerating maneuvers are proposed for a simple spacecraft with only one engine. Based on the requirement of only-accelerating maneuvers, the constraints on the orbital parameters in the entire transfer process are derived from Gauss variational equations. The explanation of these constraints from the geometric viewpoint makes it easy to determine an initial maneuver sequence without time-consuming computation. Only-accelerating maneuvers for an orbital transfer mission can also be implemented by two different approaches: impulsive maneuvers and finite-thrust propulsive maneuvers. The algorithm to determine both maneuvers are summarized in three steps. Impulsive maneuvers can accomplish a transfer mission in an orbital period, whereas finite-thrust propulsive maneuvers require several orbital periods, but a smaller thrust. Finally, numerical simulations are conducted for their application to specific transfer missions.


2010 ◽  
Vol 6 (S276) ◽  
pp. 482-484
Author(s):  
Ulrike Kramm ◽  
Nadine Nettelmann ◽  
Ronald Redmer

AbstractFor the solar sytem giant planets the measurement of the gravitational moments J2 and J4 provided valuable information about the interior structure. However, for extrasolar planets the gravitational moments are not accessible. Nevertheless, an additional constraint for extrasolar planets can be obtained from the tidal Love number k2, which, to first order, is equivalent to J2. k2 quantifies the quadrupolic gravity field deformation at the surface of the planet in response to an external perturbing body and depends solely on the planet's internal density distribution. On the other hand, the inverse deduction of the density distribution of the planet from k2 is non-unique. The Love number k2 is a potentially observable parameter that can be obtained from tidally induced apsidal precession of close-in planets (Ragozzine & Wolf 2009) or from the orbital parameters of specific two-planet systems in apsidal alignment (Mardling 2007). We find that for a given k2, a precise value for the core mass cannot be derived. However, a maximum core mass can be inferred which equals the core mass predicted by homogeneous zero metallicity envelope models. Using the example of the extrasolar transiting planet HAT-P-13b we show to what extend planetary models can be constrained by taking into account the tidal Love number k2.


1996 ◽  
Vol 158 ◽  
pp. 459-460
Author(s):  
P. B. Marks ◽  
M. J. Sarna ◽  
R. C. Smith

There are presently eight double degenerate systems with well determined orbital parameters, their periods being either a few hours or a few days (Marsh, Dhillon & Duck 1995; Marsh 1995). The masses of the primaries and secondaries lie in the range 0.15… 0.45M⊙.We calculate two evolutionary scenarios (Sarna, Marks & Smith 1996); the first is Algol-type evolution with two phases of stable mass transfer, and the second involves first a stage of common envelope (CE) evolution followed by a stage of stable mass transfer. In both calculations we assume non-conservative mass transfer by which we mean that the total mass and angular momentum of the system are not conserved. For both scenarios we start our calculations after the first stage of mass transfer has finished. In all calculations the primary is the initially more massive star that filled its Roche lobe and transferred material to the secondary during the first phase of mass transfer, hence the secondary is the star that fills its Roche lobe in our calculations. The system’s orbital period decreases and then increases until the system detaches; we are left with a detached white dwarf/white dwarf binary with an orbital period of the order of hours or of days (see Table 1). There must exist some bifurcation period below which the systems evolve towards orbital periods of the order of hours and above which the systems evolve to periods of the order of several days.


1989 ◽  
Vol 114 ◽  
pp. 440-442
Author(s):  
M. Politano ◽  
R. F. Webbink

A zero-age cataclysmic binary (ZACB) we define as a binary system at the onset of interaction as a cataclysmic variable. We present here the results of calculations of the distributions of white dwarf masses and of orbital periods in ZACBs, due to binaries present in a stellar population which has undergone continuous, constant star formation for 1010 years.Distributions of ZACBs were calculated for binaries formed t years ago, for log t = 7.4 (the youngest age at which viable ZACBs can form) to log t = 10.0 (the assumed age of the Galactic disk), in intervals of log t = 0.1. These distributions were then integrated over time to obtain the ZACB distribution for a constant rate of star formation. To compute the individual distributions for a given t, we require the density of systems forming (number of pre-cataclysmics forming per unit volume of orbital parameter space), n£(t), and the rates at which the radii of the secondary and of its Roche lobe are changing in time, s (t) and L, s (t), respectively. In calculating nf(t), we assume that the distribution of the orbital parameters in primordial (ZAMS) binaries may be written as the product of the distribution of masses of ZAMS stars (Miller and Scalo 1979), the distribution of mass ratios in ZAMS binaries (cf. Popova, et al., 1982), and the distribution of orbital periods in ZAMS binaries (Abt 1983). In transforming the the orbital parameters from progenitor (ZAMS) to offspring (ZACB) binaries, we assume that all of the orbital energy deposited into the envelope during the common envelope phase leading to ZACB formation goes into unbinding that envelope. R.L, s (t) is determined from orbital angular momentum loss rates due to gravitational radiation (Landau and Lifshitz 1951) and magnetic braking (γ = 2 in Rappaport, Verbunt, and Joss 1983). We turn off magnetic braking if the secondary is completely convective.


2020 ◽  
Vol 500 (2) ◽  
pp. 2711-2731
Author(s):  
Andrew Bunting ◽  
Caroline Terquem

ABSTRACT We calculate the conversion from non-adiabatic, non-radial oscillations tidally induced by a hot Jupiter on a star to observable spectroscopic and photometric signals. Models with both frozen convection and an approximation for a perturbation to the convective flux are discussed. Observables are calculated for some real planetary systems to give specific predictions. The photometric signal is predicted to be proportional to the inverse square of the orbital period, P−2, as in the equilibrium tide approximation. However, the radial velocity signal is predicted to be proportional to P−1, and is therefore much larger at long orbital periods than the signal corresponding to the equilibrium tide approximation, which is proportional to P−3. The prospects for detecting these oscillations and the implications for the detection and characterization of planets are discussed.


2018 ◽  
Vol 616 ◽  
pp. A186 ◽  
Author(s):  
F. Fürst ◽  
D. J. Walton ◽  
M. Heida ◽  
F. A. Harrison ◽  
D. Barret ◽  
...  

We present a timing analysis of multiple XMM-Newton and NuSTAR observations of the ultra-luminous pulsar NGC 7793 P13 spread over its 65 d variability period. We use the measured pulse periods to determine the orbital ephemeris, confirm a long orbital period with Porb = 63.9+0.5−0.6 d, and find an eccentricity of e ≤ 0.15. The orbital signature is imprinted on top of a secular spin-up, which seems to get faster as the source becomes brighter. We also analyze data from dense monitoring of the source with Swift and find an optical photometric period of 63.9 ± 0.5 d and an X-ray flux period of 66.8 ± 0.4 d. The optical period is consistent with the orbital period, while the X-ray flux period is significantly longer. We discuss possible reasons for this discrepancy, which could be due to a super-orbital period caused by a precessing accretion disk or an orbital resonance. We put the orbital period of P13 into context with the orbital periods implied for two other ultra-luminous pulsars, M82 X-2 and NGC 5907 ULX, and discuss possible implications for the system parameters.


2003 ◽  
Vol 214 ◽  
pp. 215-217
Author(s):  
Q. Z. Liu ◽  
X. D. Li ◽  
D. M. Wei

The relation between the spin period (Ps) and the orbital period (Po) in high-mass X-ray binaries (HMXBs) is investigated. In order for Be/X-ray binaries to locate above the critical line of observable X-ray emission due to accretion, it is necessary for an intermediate orbital eccentricity to be introduced. We suggest that some peculiar systems in the Po − Ps diagram are caused by their peculiar magnetic fields.


2018 ◽  
Vol 615 ◽  
pp. A177 ◽  
Author(s):  
A.-L. Maire ◽  
L. Rodet ◽  
C. Lazzoni ◽  
A. Boccaletti ◽  
W. Brandner ◽  
...  

Context. A low-mass brown dwarf has recently been imaged around HR 2562 (HD 50571), a star hosting a debris disk resolved in the far infrared. Interestingly, the companion location is compatible with an orbit coplanar with the disk and interior to the debris belt. This feature makes the system a valuable laboratory to analyze the formation of substellar companions in a circumstellar disk and potential disk-companion dynamical interactions. Aims. We aim to further characterize the orbital motion of HR 2562 B and its interactions with the host star debris disk. Methods. We performed a monitoring of the system over ~10 months in 2016 and 2017 with the VLT/SPHERE exoplanet imager. Results. We confirm that the companion is comoving with the star and detect for the first time an orbital motion at high significance, with a current orbital motion projected in the plane of the sky of 25 mas (~0.85 au) per year. No orbital curvature is seen in the measurements. An orbital fit of the SPHERE and literature astrometry of the companion without priors on the orbital plane clearly indicates that its orbit is (quasi-)coplanar with the disk. To further constrain the other orbital parameters, we used empirical laws for a companion chaotic zone validated by N-body simulations to test the orbital solutions that are compatible with the estimated disk cavity size. Non-zero eccentricities (>0.15) are allowed for orbital periods shorter than 100 yr, while only moderate eccentricities up to ~0.3 for orbital periods longer than 200 yr are compatible with the disk observations. A comparison of synthetic Herschel images to the real data does not allow us to constrain the upper eccentricity of the companion.


2014 ◽  
Vol 13 (4) ◽  
pp. 324-336 ◽  
Author(s):  
Takashi Sasaki ◽  
Jason W. Barnes

AbstractWe consider tidal decay lifetimes for moons orbiting habitable extrasolar planets using the constant Q approach for tidal evolution theory. Large moons stabilize planetary obliquity in some cases, and it has been suggested that large moons are necessary for the evolution of complex life. We find that the Moon in the Sun–Earth system must have had an initial orbital period of not slower than 20 h rev−1 for the moon's lifetime to exceed a 5 Gyr lifetime. We assume that 5 Gyr is long enough for life on planets to evolve complex life. We show that moons of habitable planets cannot survive for more than 5 Gyr if the stellar mass is less than 0.55 and 0.42 M⊙ for Qp=10 and 100, respectively, where Qp is the planetary tidal dissipation quality factor. Kepler-62e and f are of particular interest because they are two actually known rocky planets in the habitable zone. Kepler-62e would need to be made of iron and have Qp=100 for its hypothetical moon to live for longer than 5 Gyr. A hypothetical moon of Kepler-62f, by contrast, may have a lifetime greater than 5 Gyr under several scenarios, and particularly for Qp=100.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Maocai Wang ◽  
Xin Luo ◽  
Guangming Dai ◽  
Xiaoyu Chen

Grid point technique is a classical method in computing satellite constellation coverage to the ground regions. Aiming at improving the low computational efficiency of the conventional method, a method using latitude stripe division is proposed, which has high efficiency, and we name it latitude stripe method. After dividing the target region into several latitude stripes, the coverage status of each latitude stripe is computed by means of the spherical geometry relationship in the first orbital period. The longitude coverage intervals in the remaining orbital periods are computed by sliding the coverage status in the first orbital period. Based on this method, the instantaneous and cumulative coverage in simulation time can be calculated more efficiently. As well, the relationship between the cumulative coverage and altitude can be computed fast by this method, which could be used in the optimized design of repeating sun-synchronous orbits. The comparison between the conventional grid point method and the latitude stripe method shows that the latitude stripe method has high efficiency and accuracy. Through various case studies, the optimization in repeating sun-synchronous orbits design is successfully represented.


Sign in / Sign up

Export Citation Format

Share Document