scholarly journals Gas Accretion and Mergers in Massive Galaxies at z ~ 2

2012 ◽  
Vol 8 (S295) ◽  
pp. 45-48
Author(s):  
C. J. Conselice ◽  
Jamie Ownsworth ◽  
Alice Mortlock ◽  
Asa F. L. Bluck ◽  

AbstractGalaxy assembly is an unsolved problem, with ΛCDM theoretical models unable to easily account for among other things, the abundances of massive galaxies, and the observed merger history. We show here how the problem of galaxy formation can be addressed in an empirical way without recourse to models. We discuss how galaxy assembly occurs at 1.5 < z < 3 examining the role of major and minor mergers, and gas accretion from the intergalactic medium in forming massive galaxies with log M* > 11 found within the GOODS NICMOS Survey (GNS). We find that major mergers, minor mergers and gas accretion are roughly equally important in the galaxy formation process during this epoch, with 64% of the mass assembled through merging and 36% through accreted gas which is later converted to stars, while 58% of all new star formation during this epoch arises from gas accretion. We also discuss how the total gas accretion rate is measured as Ṁ = 90±40 M⊙ yr−1 at this epoch, a value close to those found in some hydrodynamical simulations.

2020 ◽  
Vol 497 (4) ◽  
pp. 4495-4516 ◽  
Author(s):  
Peter D Mitchell ◽  
Joop Schaye ◽  
Richard G Bower

ABSTRACT The role of galactic wind recycling represents one of the largest unknowns in galaxy evolution, as any contribution of recycling to galaxy growth is largely degenerate with the inflow rates of first-time infalling material, and the rates with which outflowing gas and metals are driven from galaxies. We present measurements of the efficiency of wind recycling from the eagle cosmological simulation project, leveraging the statistical power of large-volume simulations that reproduce a realistic galaxy population. We study wind recycling at the halo scale, i.e. gas that has been ejected beyond the halo virial radius, and at the galaxy scale, i.e. gas that has been ejected from the interstellar medium to at least $\approx 10 \, {{\ \rm per\ cent}}$ of the virial radius. Galaxy-scale wind recycling is generally inefficient, with a characteristic return time-scale that is comparable to or longer than a Hubble time, and with an efficiency that clearly peaks at the characteristic halo mass of $M_{200} = 10^{12} \, \mathrm{M_\odot }$. Correspondingly, the majority of gas being accreted on to galaxies in eagle is infalling for the first time. Recycling is more efficient at the halo scale, with values that differ by orders of magnitude from those assumed by semi-analytical galaxy formation models. Differences in the efficiency of wind recycling with other hydrodynamical simulations are currently difficult to assess, but are likely smaller. We find that cumulative first-time gas accretion rates at the virial radius are reduced relative to the expectation from dark matter accretion for haloes with mass $M_{200} \lt 10^{12} \, \mathrm{M_\odot }$, indicating efficient preventative feedback on halo scales.


2009 ◽  
Vol 5 (S267) ◽  
pp. 17-25 ◽  
Author(s):  
D. Elbaz

AbstractWe discuss evidence that quasars, and more generally radio jets, may have played an active role in the formation stage of galaxies by inducing star formation, i.e., through positive feedback. This mechanism first proposed in the 1970s has been considered as anecdotal until now, contrary to the opposite effect that is generally put forward, i.e., the quenching of star formation in massive galaxies to explain the galaxy bimodality, downsizing, and the universal black hole mass over bulge stellar mass ratio. This suggestion is based on the recent discovery of an ultra-luminous infrared galaxy, i.e., an extreme starburst, that appears to be triggered by a radio jet from the QSO HE 0450-2958 at z = 0.2863, together with the finding in several systems of a positional offset between molecular gas and quasars, which may be explained by the positive feedback effect of radio jets on their local environment.


Author(s):  
Joseph A O’Leary ◽  
Benjamin P Moster ◽  
Thorsten Naab ◽  
Rachel S Somerville

Abstract We explore the galaxy-galaxy merger rate with the empirical model for galaxy formation, emerge. On average, we find that between 2 per cent and 20 per cent of massive galaxies (log10(m*/M⊙) ≥ 10.3) will experience a major merger per Gyr. Our model predicts galaxy merger rates that do not scale as a power-law with redshift when selected by descendant stellar mass, and exhibit a clear stellar mass and mass-ratio dependence. Specifically, major mergers are more frequent at high masses and at low redshift. We show mergers are significant for the stellar mass growth of galaxies log10(m*/M⊙) ≳ 11.0. For the most massive galaxies major mergers dominate the accreted mass fraction, contributing as much as 90 per cent of the total accreted stellar mass. We reinforce that these phenomena are a direct result of the stellar-to-halo mass relation, which results in massive galaxies having a higher likelihood of experiencing major mergers than low mass galaxies. Our model produces a galaxy pair fraction consistent with recent observations, exhibiting a form best described by a power-law exponential function. Translating these pair fractions into merger rates results in an inaccurate prediction compared to the model intrinsic values when using published observation timescales. We find the pair fraction can be well mapped to the intrinsic merger rate by adopting an observation timescale that decreases linearly with redshift as Tobs = −0.36(1 + z) + 2.39 [Gyr], assuming all observed pairs merge by z = 0.


2020 ◽  
Vol 501 (2) ◽  
pp. 1591-1602
Author(s):  
T Parsotan ◽  
R K Cochrane ◽  
C C Hayward ◽  
D Anglés-Alcázar ◽  
R Feldmann ◽  
...  

ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2.


2006 ◽  
Vol 2 (S235) ◽  
pp. 139-139
Author(s):  
L. Sodré ◽  
A. Mateus ◽  
R. Cid Fernandes ◽  
G. Stasińska ◽  
W. Schoenell ◽  
...  

AbstractWe revisit the bimodality of the galaxy population seen in the local universe. We address this issue in terms of physical properties of galaxies, such as mean stellar ages and stellar masses, derived from the application of a spectral synthesis method to galaxy spectra from the SDSS. We show that the mean light-weighted stellar age of galaxies presents the best description of the bimodality seen in the galaxy population. The stellar mass has an additional role since most of the star-forming galaxies present in the local universe are low-mass galaxies. Our results give support to the existence of a ‘downsizing’ in galaxy formation, where nowadays massive galaxies tend to have stellar populations older than those found in less massive objects.


2010 ◽  
Vol 6 (S271) ◽  
pp. 119-126 ◽  
Author(s):  
Francoise Combes

AbstractRecent results are reviewed on galaxy dynamics, bar evolution, destruction and re-formation, cold gas accretion, gas radial flows and AGN fueling, minor mergers. Some problems of galaxy evolution are discussed in particular, exchange of angular momentum, radial migration through resonant scattering, and consequences on abundance gradients, the frequency of bulgeless galaxies, and the relative role of secular evolution and hierarchical formation.


2012 ◽  
Vol 8 (S295) ◽  
pp. 191-199
Author(s):  
Carlton M. Baugh

AbstractMassive galaxies with old stellar populations have been put forwards as a challenge to models in which cosmic structures grow hierarchically through gravitational instability. I will explain how the growth of massive galaxies is helped by features of hierarchical models. I give a brief outline of how the galaxy formation process is modelled in hierarchical cosmologies using semi-analytical models, and illustrate how these models can be refined as our understanding of processes such as star formation improves. I then present a brief survey of the current state of play in the modelling of massive galaxies and list some outstanding challenges.


2020 ◽  
Vol 496 (3) ◽  
pp. 3169-3181
Author(s):  
Makoto Ando ◽  
Kazuhiro Shimasaku ◽  
Rieko Momose

ABSTRACT A proto-cluster core is the most massive dark matter halo (DMH) in a given proto-cluster. To reveal the galaxy formation in core regions, we search for proto-cluster cores at z ∼ 2 in ${\sim}1.5\, \mathrm{deg}^{2}$ of the COSMOS field. Using pairs of massive galaxies [log (M*/M⊙) ≥ 11] as tracers of cores, we find 75 candidate cores, among which 54 per cent are estimated to be real. A clustering analysis finds that these cores have an average DMH mass of $2.6_{-0.8}^{+0.9}\times 10^{13}\, \mathrm{M}_{\odot }$, or $4.0_{-1.5}^{+1.8}\, \times 10^{13} \, \mathrm{M}_{\odot }$ after contamination correction. The extended Press–Schechter model shows that their descendant mass at z = 0 is consistent with Fornax-like or Virgo-like clusters. Moreover, using the IllustrisTNG simulation, we confirm that pairs of massive galaxies are good tracers of DMHs massive enough to be regarded as proto-cluster cores. We then derive the stellar mass function (SMF) and the quiescent fraction for member galaxies of the 75 candidate cores. We find that the core galaxies have a more top-heavy SMF than field galaxies at the same redshift, showing an excess at log (M*/M⊙) ≳ 10.5. The quiescent fraction, $0.17_{-0.04}^{+0.04}$ in the mass range 9.0 ≤ log (M*/M⊙) ≤ 11.0, is about three times higher than that of field counterparts, giving an environmental quenching efficiency of $0.13_{-0.04}^{+0.04}$. These results suggest that stellar mass assembly and quenching are accelerated as early as z ∼ 2 in proto-cluster cores.


2006 ◽  
Vol 2 (S235) ◽  
pp. 195-195
Author(s):  
Julia M. Comerford ◽  
Eliot Quataert ◽  
Chung-Pei Ma

Recent observations suggest that dissipationless mergers of elliptical galaxies build up the population of massive early-type galaxies (Bell et al. 2004; Faber et al. 2006). This type of merger is observed in galaxy clusters (Tran et al. 2005) and predicted by semi-analytic models which find mass assembly times significantly later than star-formation times for the most massive elliptical galaxies (de Lucia & Blaizot 2006). Here, we use a semi-analytic model of minor mergers of dark matter halos to examine the role of dry minor mergers in elliptical galaxy formation.


2012 ◽  
Vol 8 (S295) ◽  
pp. 176-176
Author(s):  
Jesús Gallego ◽  
Mercedes Prieto ◽  
M. Carmen Eliche-Moral ◽  
Marc Balcells ◽  
David Cristóbal-Hornillos ◽  
...  

AbstractSome recent observations seem to disagree with hierarchical theories of galaxy formation on the role of major mergers in a late build-up of massive early-type galaxies. We re-address this question by analysing the morphology, structural distortion level, and star formation enhancement of a sample of massive galaxies (M* > 5 × 1010M⊙) lying on the Red Sequence and its surroundings at 0.3 < z < 1.5. We have used an initial sample of ~1800 sources with Ks < 20.5 mag over an area ~155 arcmin2 on the Groth Strip, combining data from the Rainbow Extragalactic Database and the GOYA Survey. Red galaxy classes that can be directly associated to intermediate stages of major mergers and to their final products have been defined. For the first time we report observationally the existence of a dominant evolutionary path among massive red galaxies at 0.6 < z < 1.5, consisting in the conversion of irregular disks into irregular spheroids, and of these ones into regular spheroids. This result points to: 1) the massive red regular galaxies at low redshifts derive from the irregular ones populating the Red Sequence and its neighbourhood at earlier epochs up to z ~ 1.5; 2) the progenitors of the bulk of present-day massive red regular galaxies have been blue disks that have migrated to the Red Sequence majoritarily through major mergers at 0.6 < z < 1.2 (these mergers thus starting at z ~ 1.5); 3) the formation of E-S0's that end up with M* > 1011M⊙ at z = 0 through gas-rich major mergers has frozen since z ~ 0.6. Our results support that major mergers have played the dominant role in the definitive build-up of present-day E-S0's with M* > 1011M⊙ at 0.6 < z < 1.2, in good agreement with the hierarchical scenario proposed in the Eliche-Moral et al. (2010a) model (see also Eliche-Moral et al. 2010b). This study is published in Prieto et al. (2012).Supported by the Spanish Ministry of Science and Innovation (MICINN) under projects AYA2009-10368, AYA2006-12955, AYA2010-21887-C04-04, and AYA2009-11137, by the Madrid Regional Government through the AstroMadrid Project (CAM S2009/ESP-1496), and by the Spanish MICINN under the Consolider-Ingenio 2010 Program grant CSD2006-00070: “First Science with the GTC” (http://www.iac.es/consolider-ingenio-gtc/). S. D. H. & G.


Sign in / Sign up

Export Citation Format

Share Document