scholarly journals The early gaseous and stellar mass assembly of Milky Way-type galaxy halos

2015 ◽  
Vol 11 (S317) ◽  
pp. 235-240
Author(s):  
Gerhard Hensler ◽  
Mykola Petrov

AbstractHow the Milky Way has accumulated its mass over the Hubble time, whether significant amounts of gas and stars were accreted from satellite galaxies, or whether the Milky Way has experienced an initial gas assembly and then evolved more-or-less in isolation is one of the burning questions in modern astronomy, because it has consequences for our understanding of galaxy formation in the cosmological context. Here we present the evolutionary model of a Milky Way-type satellite system zoomed into a cosmological large-scale simulation. Embedded into Dark Matter halos and allowing for baryonic processes these chemo-dynamical simulations aim at studying the gas and stellar loss from the satellites to feed the Milky Way halo and the stellar chemical abundances in the halo and the satellite galaxies.

2005 ◽  
Vol 216 ◽  
pp. 120-128
Author(s):  
Matthias Steinmetz

Maps of the cosmos, in particular maps of the cosmic microwave background and of the large scale distribution of galaxies have been crucial ingredients in the development of the standard model of structure formation, sometimes also labeled “concordance model”. This model has proven to be remarkably successful in explaining an impressive array of observations on scales of hundreds of kpc to thousands of Mpc. In this contribution I will attempt to extend those studies to smaller, (sub)galactic scales and will confront detailed gas-dynamical simulations of the formation of individual galaxies with observational data on these scales, reporting some successes and failures of this endeavor. Ongoing surveys that are mapping the distribution of stars in the Milky Way should be able to clearly identify the imprints of the hierarchical galaxy formation process providing an independent check of the validity of the structure formation paradigm.


2009 ◽  
Vol 5 (S265) ◽  
pp. 461-469
Author(s):  
Rosemary F.G. Wyse

AbstractThe chemical abundances in the atmosphere of a star provide unique information about the gas from which that star formed, and, modulo processes that are not important for the vast majority of stars, such as mass transfer in close binary systems, are conserved through a star's life. Correlations between chemistry and kinematics have been used for decades to trace dynamical evolution of the Milky Way Galaxy. I discuss how it should be possible to refine and extend such analyses, provided planned large-scale deep imaging surveys have matched spectroscopic surveys.


2020 ◽  
Vol 500 (3) ◽  
pp. 3776-3801
Author(s):  
Wenting Wang ◽  
Masahiro Takada ◽  
Xiangchong Li ◽  
Scott G Carlsten ◽  
Ting-Wen Lan ◽  
...  

ABSTRACT We conduct a comprehensive and statistical study of the luminosity functions (LFs) for satellite galaxies, by counting photometric galaxies from HSC, DECaLS, and SDSS around isolated central galaxies (ICGs) and paired galaxies from the SDSS/DR7 spectroscopic sample. Results of different surveys show very good agreement. The satellite LFs can be measured down to MV ∼ −10, and for central primary galaxies as small as 8.5 < log10M*/M⊙ < 9.2 and 9.2 < log10M*/M⊙ < 9.9, which implies there are on average 3–8 satellites with MV < −10 around LMC-mass ICGs. The bright end cutoff of satellite LFs and the satellite abundance are both sensitive to the magnitude gap between the primary and its companions, indicating galaxy systems with larger magnitude gaps are on average hosted by less massive dark matter haloes. By selecting primaries with stellar mass similar to our Milky Way (MW), we discovered that (i) the averaged satellite LFs of ICGs with different magnitude gaps to their companions and of galaxy pairs with different colour or colour combinations all show steeper slopes than the MW satellite LF; (ii) there are on average more satellites with −15 < MV < −10 than those in our MW; (iii) there are on average 1.5 to 2.5 satellites with MV < −16 around ICGs, consistent with our MW; (iv) even after accounting for the large scatter predicted by numerical simulations, the MW satellite LF is uncommon at MV > −12. Hence, the MW and its satellite system are statistically atypical of our sample of MW-mass systems. In consequence, our MW is not a good representative of other MW-mass galaxies. Strong cosmological implications based on only MW satellites await additional discoveries of fainter satellites in extra-galactic systems. Interestingly, the MW satellite LF is typical among other MW-mass systems within 40 Mpc in the local Universe, perhaps implying the Local Volume is an underdense region.


2021 ◽  
Vol 923 (1) ◽  
pp. 42
Author(s):  
Marcel S. Pawlowski ◽  
Sangmo Tony Sohn

Abstract Half of the satellite galaxies of Andromeda form a narrow plane termed the Great Plane of Andromeda (GPoA), and their line-of-sight velocities display a correlation reminiscent of a rotating structure. Recently reported first proper-motion measurements for the on-plane satellites NGC 147 and NGC 185 indicate that they indeed co-orbit along the GPoA. This provides a novel opportunity to compare the M31 satellite system to ΛCDM expectations. We perform the first detailed comparison of the orbital alignment of two satellite galaxies beyond the Milky Way with several hydrodynamical and dark-matter-only cosmological simulations (Illustris TNG50, TNG100, ELVIS, and PhatELVIS) in the context of the Planes of Satellite Galaxies Problem. In line with previous works, we find that the spatial flattening and line-of-sight velocity correlation are already in substantial tension with ΛCDM, with none of the simulated analogs simultaneously reproducing both parameters. Almost none (3%–4%) of the simulated systems contain two satellites with orbital poles as well aligned with their satellite plane as indicated by the most likely proper motions of NGC 147 and NGC 185. However, within current measurement uncertainties, it is common (≈70%) that the two best-aligned satellites of simulated systems are consistent with the orbital alignment. Yet, the chance that any two simulated on-plane satellites have as well-aligned orbital poles as observed is low (≈4%). We conclude that confirmation of the tight orbital alignment for these two objects via improved measurements, or the discovery of similar alignments for additional GPoA members, holds the potential to further raise the tension with ΛCDM expectations.


2020 ◽  
Vol 498 (2) ◽  
pp. 1765-1785 ◽  
Author(s):  
Andreea S Font ◽  
Ian G McCarthy ◽  
Robert Poole-Mckenzie ◽  
Sam G Stafford ◽  
Shaun T Brown ◽  
...  

ABSTRACT We introduce the Assembly of high-ResoluTion Eagle-simulations of MIlky Way-type galaxieS (artemis) simulations, a new set of 42 zoomed-in, high-resolution (baryon particle mass of $\approx 2\times 10^4 \, {\rm M}_{\odot }\, h^{-1}$), hydrodynamical simulations of galaxies residing in haloes of Milky Way mass, simulated with the eagle galaxy formation code with re-calibrated stellar feedback. In this study, we analyse the structure of stellar haloes, specifically the mass density, surface brightness, metallicity, colour, and age radial profiles, finding generally very good agreement with recent observations of local galaxies. The stellar density profiles are well fitted by broken power laws, with inner slopes of ≈−3, outer slopes of ≈−4, and break radii that are typically ≈20–40 kpc. The break radii generally mark the transition between in situ formation and accretion-driven formation of the halo. The metallicity, colour, and age profiles show mild large-scale gradients, particularly when spherically averaged or viewed along the major axes. Along the minor axes, however, the profiles are nearly flat, in agreement with observations. Overall, the structural properties can be understood by two factors: that in situ stars dominate the inner regions and that they reside in a spatially flattened distribution that is aligned with the disc. Observations targeting both the major and minor axes of galaxies are thus required to obtain a complete picture of stellar haloes.


2020 ◽  
Vol 497 (1) ◽  
pp. 747-764 ◽  
Author(s):  
Isaiah B Santistevan ◽  
Andrew Wetzel ◽  
Kareem El-Badry ◽  
Joss Bland-Hawthorn ◽  
Michael Boylan-Kolchin ◽  
...  

ABSTRACT Surveys of the Milky Way (MW) and M31 enable detailed studies of stellar populations across ages and metallicities, with the goal of reconstructing formation histories across cosmic time. These surveys motivate key questions for galactic archaeology in a cosmological context: When did the main progenitor of an MW/M31-mass galaxy form, and what were the galactic building blocks that formed it? We investigate the formation times and progenitor galaxies of MW/M31-mass galaxies using the Feedback In Realistic Environments-2 cosmological simulations, including six isolated MW/M31-mass galaxies and six galaxies in Local Group (LG)-like pairs at z = 0. We examine main progenitor ‘formation’ based on two metrics: (1) transition from primarily ex-situ to in-situ stellar mass growth and (2) mass dominance compared to other progenitors. We find that the main progenitor of an MW/M31-mass galaxy emerged typically at z ∼ 3–4 ($11.6\!\!-\!\!12.2\, \rm {Gyr}$ ago), while stars in the bulge region (inner 2 kpc) at z = 0 formed primarily in a single main progenitor at z ≲ 5 (${\lesssim} \!12.6\, \rm {Gyr}$ ago). Compared with isolated hosts, the main progenitors of LG-like paired hosts emerged significantly earlier (Δz ∼ 2, $\Delta t\!\sim \!1.6\, \rm {Gyr}$), with ∼4× higher stellar mass at all z ≳ 4 (${\gtrsim} \!12.2\, \rm {Gyr}$ ago). This highlights the importance of environment in MW/M31-mass galaxy formation, especially at early times. On average, about 100 galaxies with $\rm {\it{ M}}_\rm {star}\!\gtrsim \!10^5\, \rm {M}_\odot$ went into building a typical MW/M31-mass system. Thus, surviving satellites represent a highly incomplete census (by ∼5×) of the progenitor population.


2008 ◽  
Vol 4 (S254) ◽  
pp. 381-392 ◽  
Author(s):  
Nikos Prantzos

AbstractI discuss three different topics concerning the chemical evolution of the Milky Way (MW). 1) The metallicity distribution of the MW halo; it is shown that this distribution can be analytically derived in the framework of the hierarchical merging scenario for galaxy formation, assuming that the component sub-haloes had chemical properties similar to those of the progenitors of satellite galaxies of the MW. 2) The age-metallicity relationship (AMR) in the solar neighborhood; I argue for caution in deriving from data with important uncertainties (such as the age uncertainties in the Geneva-Copenhagen Survey) a relationship between average metallicity and age: derived relationships are shown to be systematically flatter than the true ones and should not be directly compared to models. 3) The radial mixing of stars in the disk, which may have important effects on various observables (scatter in AMR, extension of the tails of the metallicity distribution, flatenning of disk abundance profiles). Recent SPH + N-body simulations find considerable radial mixing, but only comparison to observations will ultimately determine the extent of that mixing.


2020 ◽  
Vol 642 ◽  
pp. A83 ◽  
Author(s):  
Andrej Dvornik ◽  
Henk Hoekstra ◽  
Konrad Kuijken ◽  
Angus H. Wright ◽  
Marika Asgari ◽  
...  

We simultaneously present constraints on the stellar-to-halo mass relation for central and satellite galaxies through a weak lensing analysis of spectroscopically classified galaxies. Using overlapping data from the fourth data release of the Kilo-Degree Survey (KiDS), and the Galaxy And Mass Assembly survey (GAMA), we find that satellite galaxies are hosted by halo masses that are 0.53 ± 0.39 dex (68% confidence, 3σ detection) smaller than those of central galaxies of the same stellar mass (for a stellar mass of log(M⋆/M⊙) = 10.6). This is consistent with galaxy formation models, whereby infalling satellite galaxies are preferentially stripped of their dark matter. We find consistent results with similar uncertainties when comparing constraints from a standard azimuthally averaged galaxy-galaxy lensing analysis and a two-dimensional likelihood analysis of the full shear field. As the latter approach is somewhat biased due to the lens incompleteness and as it does not provide any improvement to the precision when applied to actual data, we conclude that stacked tangential shear measurements are best-suited for studies of the galaxy-halo connection.


2012 ◽  
Vol 29 (4) ◽  
pp. 383-394 ◽  
Author(s):  
Helmut Jerjen

AbstractThe Sloan Digital Sky Survey has been immensely successful in detecting new Milky Way satellite galaxies over the past seven years. It was instrumental in finding examples of the least luminous galaxies we know in the Universe, uncovering apparent inconsistencies between cold dark matter theory and dwarf galaxy properties, providing first evidence for a possible lower mass limit for dark matter halos in visible galaxies, and reopening the discussion about the building block scenario for the Milky Way halo. Nonetheless, these results are still drawn only from a relatively small number of galaxies distributed over an area covering about 29% of the sky, which leaves us currently with more questions than answers. The study of these extreme stellar systems is a multi-parameter problem: ages, metallicities, star formation histories, dark matter contents, population fractions and spatial distributions must be determined. Progress in the field is discussed and attention drawn to some of the limitations that currently hamper our ability to fully understand the phenomenon of the ‘ultra-faint dwarf galaxy’. In this context, the Stromlo Milky Way Satellite Survey represents a new initiative to systematically search and scrutinize optically elusive Milky Way satellite galaxies in the Southern hemisphere. In doing so, the program aims at investigating some of the challenging questions in stellar evolution, galaxy formation and near-field cosmology.


2018 ◽  
Vol 14 (S344) ◽  
pp. 498-501
Author(s):  
Takashi Okamoto

AbstractSelf-interacting dark matter (SIDM) can create sufficiently large cores in dark matter haloes of dwarf galaxies if the self-interaction cross-section is sufficiently large on scales of dwarf galaxies. Such a large cross-section can be realized without changing the densities and shapes of cluster-size haloes by introducing a velocity dependent cross-section. Lowering the central densities of dwarf-size haloes, however, may change the strength of stellar feedback required to reproduce observed properties of dwarf galaxies such as the luminosity function of the Milky Way’s satellite galaxies. We perform simulations of galaxy formation by employing such a velocity dependent self-interaction cross-section to investigate the coupled effect of SIDM and feedback.


Sign in / Sign up

Export Citation Format

Share Document