scholarly journals Modelling dust production in AGB stars

2016 ◽  
Vol 12 (S323) ◽  
pp. 165-168
Author(s):  
Flavia Dell’Agli

AbstractAsymptotic giant branch (AGB) stars are among the most important gas and dust polluters of the Universe. The latest AGB evolutionary models take into account dust production in the circumstellar envelope of these stars, starting from a detailed computation of the main physical processes and chemical surface variations occurring in this evolutionary phase. Following the formation and growth of dust particles, they provide the unique possibility of interpreting the AGB population observed in resolved galaxies. The first application was for the Spitzer observations of dusty AGBs in the Magellanic Clouds, characterising carbon-rich and oxygen-rich stars in terms of initial mass, epoch of star formation, evolutionary time on the AGB and dust contribution. The same set of models are able to interpret the CNO surface abundances observed for the PNe of the same galaxies.

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 233
Author(s):  
Ambra Nanni ◽  
Sergio Cristallo ◽  
Jacco Th. van Loon ◽  
Martin A. T. Groenewegen

Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condensed into dust grains formed in their extended circumstellar envelopes. Among these stars, carbon-rich TP-AGB stars (C-stars) are particularly relevant for the chemical enrichment of galaxies. We here investigated the role of the metallicity in the dust formation process from a theoretical viewpoint. Methods: We coupled an up-to-date description of dust growth and dust-driven wind, which included the time-averaged effect of shocks, with FRUITY stellar evolutionary tracks. We compared our predictions with observations of C-stars in our Galaxy, in the Magellanic Clouds (LMC and SMC) and in the Galactic Halo, characterised by metallicity between solar and 1/10 of solar. Results: Our models explained the variation of the gas and dust content around C-stars derived from the IRS Spitzer spectra. The wind speed of the C-stars at varying metallicity was well reproduced by our description. We predicted the wind speed at metallicity down to 1/10 of solar in a wide range of mass-loss rates.


2018 ◽  
Vol 14 (S343) ◽  
pp. 129-133
Author(s):  
J. Boulangier ◽  
D. Gobrecht ◽  
L. Decin

AbstractUnderstanding Asymptotic Giant Branch (AGB) stars is important as they play a vital role in the chemical life cycle of galaxies. AGB stars are in a phase of their life time where they have almost ran out of fuel and are losing vast amounts of material to their surroundings, via stellar winds. As this is an evolutionary phase of low mass stars, almost all stars go through this phase making them one of the main contributors to the chemical enrichment of galaxies. It is therefore important to understand what kind of material is being lost by these stars, and how much and how fast. This work summarises the steps we have taken towards developing a self-consistent AGB wind model. We improve on current models by firstly coupling chemical and hydrodynamical evolution, and secondly by upgrading the nucleation theory framework to investigate the creation of TiO2, SiO, MgO, and Al2O3 clusters.


2008 ◽  
Vol 4 (S251) ◽  
pp. 341-342
Author(s):  
Ernst Zinner

AbstractUltimately, all of the solids in the Solar System, including ourselves, consist of elements that were made in stars by stellar nucelosynthesis. However, most of the material from many different stellar sources that went into the making of the Solar System was thoroughly mixed, obliterating any information about its origin. An exception are tiny grains of preserved stardust found in primitive meteorites, micrometeorites, and interplanetary dust particles. These μm- and sub-μm-sized presolar grains are recognized as stardust by their isotopic compositions, which are completely different from those of the Solar System. They condensed in outflows from late-type stars and in SN ejecta and were included in meteorites, from which they can be isolated and studied for their isotopic compositions in the laboratory. Thus these grains constitute a link between us and our stellar ancestors. They provide new information on stellar evolution, nucleosynthesis, mixing processes in asymptotic giant branch (AGB) stars and supernovae, and galactic chemical evolution. Red giants, AGB stars, Type II supernovae, and possibly novae have been identified as stellar sources of the grains. Stardust phases identified so far include silicates, oxides such as corundum, spinel, and hibonite, graphite, silicon carbide, silicon nitride, titanium carbide, and Fe-Ni metal.


1996 ◽  
Vol 13 (2) ◽  
pp. 185-186
Author(s):  
Jessica M. Chapman

Radio emission at centimetre and millimetre wavelengths provides a powerful tool for studying the circumstellar envelopes of evolved stars. These include stars on the asymptotic giant branch (AGB), post-AGB stars and a small number of massive M-type supergiant stars. The AGB stars and M-type supergiants are characterised by extremely high mass-loss rates. The mass loss in such an evolved star is driven by radiation pressure acting on grains which form in the outer stellar atmosphere. The grains are accelerated outwards and transfer momentum to the gas through grain–gas collisions. The outflowing dust and gas thus form an expanding circumstellar envelope through which matter flows from the star to the interstellar medium, at a typical velocity of 15 km s−1. For a recent review of circumstellar mass loss see Chapman, Habing & Killeen (1995).


2019 ◽  
Vol 626 ◽  
pp. A92 ◽  
Author(s):  
M. Gładkowski ◽  
R. Szczerba ◽  
G. C. Sloan ◽  
E. Lagadec ◽  
K. Volk

Aims. We present an analysis and comparison of the 30 μm dust features seen in the Spitzer Space Telescope spectra of 207 carbon-rich asymptotic giant branch (AGB) stars, post-AGB objects, and planetary nebulae (PNe) located in the Milky Way, the Magellanic Clouds (MCs), or the Sagittarius dwarf spheroidal galaxy (Sgr dSph), which are characterised by different average metallicities. We investigated whether the formation of the 30 μm feature carrier may be a function of the metallicity. Through this study we expect to better understand the late stages of stellar evolution of carbon-rich stars in these galaxies. Methods. Our analysis uses the “Manchester method” as a basis for estimating the temperature of dust for the carbon-rich AGB stars and the PNe in our sample. For post-AGB objects we changed the wavelength ranges used for temperature estimation, because of the presence of the 21 μm feature on the short wavelength edge of the 30 μm feature. We used a black-body function with a single temperature deduced from the Manchester method or its modification to approximate the continuum under the 30 μm feature. Results. We find that the strength of the 30 μm feature increases until dust temperature drops below 400 K. Below this temperature, the large loss of mass and probably the self-absorption effect reduces the strength of the feature. During the post-AGB phase, when the intense mass-loss has terminated, the optical depth of the circumstellar envelope is smaller, and the 30 μm feature becomes visible again, showing variety of values for post-AGB objects and PNe, and being comparable with the strengths of AGB stars. In addition, the AGB stars and post-AGB objects show similar values of central wavelengths – usually between 28.5 and 29.5 μm. However, in case of PNe the shift of the central wavelength towards longer wavelengths is visible. The normalised median profiles for AGB stars look uniformly for various ranges of dust temperature, and different galaxies. We analysed the profiles of post-AGB objects and PNe only within one dust temperature range (below 200 K), and they were also similar in different galaxies. In the spectra of 17 PNe and five post-AGB objects we found the broad 16–24 μm feature. Two objects among the PNe group are the new detections: SMP LMC 51, and SMP LMC 79, whereas in the case of post-AGBs the new detections are: IRAS 05370-7019, IRAS 05537-7015, and IRAS 21546+4721. In addition, in the spectra of nine PNe we found the new detections of 16–18 μm feature. We also find that the Galactic post-AGB object IRAS 11339-6004 has a 21 μm emission. Finally, we have produced online catalogues of photometric data and Spitzer IRS spectra for all objects that show the 30 μm feature. These resources are available online for use by the community. Conclusions. The most important conclusion of our work is the fact that the formation of the 30 μm feature is affected by metallicity. Specifically that, as opposed to more metal-poor samples of AGB stars in the MCs, the feature is seen at lower mass-loss rates, higher temperatures, and has seen to be more prominent in Galactic carbon stars. The averaged feature (profile) in the AGB, post-AGB objects, and PNe seems unaffected by metallicity at least between a fifth and solar metallicity, but in the case of PNe it is shifted to significantly longer wavelengths.


2020 ◽  
Vol 641 ◽  
pp. A103
Author(s):  
P. Ventura ◽  
F. Dell’Agli ◽  
M. Lugaro ◽  
D. Romano ◽  
M. Tailo ◽  
...  

Context. Stars evolving through the asymptotic giant branch (AGB) phase provide significant feedback to their host system, which is both gas enriched in nuclear-burning products, and dust formed in their winds, which they eject into the interstellar medium. Therefore, AGB stars are an essential ingredient for the chemical evolution of the Milky Way and other galaxies. Aims. We study AGB models with super-solar metallicities to complete our vast database, so far extending from metal-poor to solar-chemical compositions. We provide chemical yields for masses in the range 1−8 M⊙ and metallicities Z = 0.03 and Z = 0.04. We also study dust production in this metallicity domain. Methods. We calculated the evolutionary sequences from the pre-main sequence through the whole AGB phase. We followed the variation of the surface chemical composition to calculate the chemical yields of the various species and model dust formation in the winds to determine the dust production rate and the total dust mass produced by each star during the AGB phase. Results. The physical and chemical evolution of the star is sensitive to the initial mass: M >  3 M⊙ stars experience hot bottom burning, whereas the surface chemistry of the lower mass counterparts is altered only by third dredge-up. The carbon-star phase is reached by 2.5−3.5 M⊙ stars of metallicity Z = 0.03, whereas all the Z = 0.04 stars (except the 2.5 M⊙) remain O-rich for the whole AGB phase. Most of the dust produced by metal-rich AGBs is in the form of silicate particles. The total mass of dust produced increases with the mass of the star, reaching ∼0.012 M⊙ for 8 M⊙ stars.


2019 ◽  
Vol 15 (S350) ◽  
pp. 245-248
Author(s):  
David Gobrecht ◽  
John M.C. Plane ◽  
Stefan T. Bromley ◽  
Leen Decin ◽  
Sergio Cristallo

AbstractAsymptotic Giant Branch (AGB) stars contribute a major part to the global dust budget in galaxies. Owing to their refractory nature alumina (stoichiometric formula AlO) is a promising candidate to be the first condensate emerging in the atmospheres of oxygen-rich AGB stars. Strong evidence for that is supplied by the presence of alumina in pristine meteorites and a broad spectral feature observed around ∼ 13 μm. The emergence of a specific condensate depends on the thermal stability of the solid, the gas density and its composition. The evaluation of the condensates is based on macroscopic bulk properties. The growth and size distribution of dust grains is commonly described by Classical Nucleation Theory (CNT). We question the applicability of CNT in an expanding circumstellar envelope as CNT presumes thermodynamic equilibrium and requires, in practise, seed nuclei on which material can condense. However, nano-sized molecular clusters differ significantly from bulk analogues. Quantum effects of the clusters lead to non-crystalline structures, whose characteristics (energy, geometry) differ substantially, compared to the bulk material. Hence, a kinetic quantum-chemical treatment involving various transition states describes dust nucleation most accurately. However, such a treatment is prohibitive for systems with more than 10 atoms. We discuss the viability of chemical-kinetic routes towards the formation of the monomer (Al2O3) and the dimer (Al4O6) of alumina.


2019 ◽  
Vol 624 ◽  
pp. L13 ◽  
Author(s):  
Aleksandra Leśniewska ◽  
Michał Jerzy Michałowski

Context. The mechanism of dust formation in galaxies at high redshift is still unknown. Asymptotic giant branch (AGB) stars and explosions of supernovae (SNe) are possible dust producers, and non-stellar processes may substantially contribute to dust production, for example grain growth in the interstellar medium. Aims. Our aim is to determine the contribution to dust production of AGB stars and SNe in nine galaxies at z ∼ 6−8.3, for which observations of dust have been recently attempted. Methods. In order to determine the origin of the observed dust we have determined dust yields per AGB star and SN required to explain the total amounts of dust in these galaxies. Results. We find that AGB stars were not able to produce the amounts of dust observed in the galaxies in our sample. In order to explain these dust masses, SNe would have to have maximum efficiency and not destroy the dust which they formed. Conclusions. Therefore, the observed amounts of dust in the galaxies in the early universe were formed either by efficient supernovae or by a non-stellar mechanism, for instance the grain growth in the interstellar medium.


2021 ◽  
Vol 654 ◽  
pp. A18
Author(s):  
W. H. T. Vlemmings ◽  
T. Khouri ◽  
D. Tafoya

Context. Observation of CO emission around asymptotic giant branch (AGB) stars is the primary method to determine gas mass-loss rates. While radiative transfer models have shown that molecular levels of CO can become mildly inverted, causing maser emission, CO maser emission has yet to be confirmed observationally. Aims. High-resolution observations of the CO emission around AGB stars now have the brightness temperature sensitivity to detect possible weak CO maser emission. Methods. We used high angular resolution observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the small-scale structure of CO J = 3−2 emission around the oxygen-rich AGB star W Hya. Results. We find CO maser emission amplifying the stellar continuum with an optical depth τ ≈−0.55. The maser predominantly amplifies the limb of the star because CO J = 3−2 absorption from the extended stellar atmosphere is strongest towards the centre of the star. Conclusions. The CO maser velocity corresponds to a previously observed variable component of high-frequency H2O masers and with the OH maser that was identified as the amplified stellar image. This implies that the maser originates beyond the acceleration region and constrains the velocity profile since we find the population inversion primarily in the inner circumstellar envelope. We find that inversion can be explained by the radiation field at 4.6 μm and that the existence of CO maser emission is consistent with the estimated mass-loss rates for W Hya. However, the pumping mechanism requires a complex interplay between absorption and emission lines in the extended atmosphere. Excess from dust in the circumstellar envelope of W Hya is not sufficient to contribute significantly to the required radiation field at 4.6 μm. The interplay between molecular lines that cause the pumping can be constrained by future multi-level CO observations.


2011 ◽  
Vol 7 (S283) ◽  
pp. 83-86
Author(s):  
Arturo Manchado ◽  
D. Anibal García-Hernández ◽  
Eva Villaver ◽  
Jean Guironnet de Massas

AbstractWe present a complete study of the morphology of post-Asymptotic Giant Branch (post-AGB) stars. The post-AGB stage is a very short evolutionary phase between the end of the AGB and the beginning of the Planetary Nebula (PN) stage (between 100 and 10,000 yrs). Post-AGB stars do not show variability and are not hot enough to fully ionize the hydrogen envelope. We have defined the end of the post-AGB phase and the beginning of the PN phase when the star has a temperature of 30000 K. Post-AGB stars have a circumstellar shell that is illuminated by the central stars or partially ionized. However, this circumstellar shell is too small to be resolved by ground-based observations. Thus, we have used the Hubble Space Telescope (HST) database to resolve these shells. 117 post-AGBs were found in this database. Here we present the preliminary results on their morphological classification and the correlation with the galactic latitude. Our preliminary results show that 38% of the sample are stellar-like (S), 31% bipolar (B), 12% multipolar (M) and 19% elliptical (E).


Sign in / Sign up

Export Citation Format

Share Document