A Hydrodynamic Modelling of Atmospheric Escape and Absorption Line of WASP-12b

2018 ◽  
Vol 14 (S345) ◽  
pp. 301-303
Author(s):  
N. K. Dwivedi ◽  
M. L. Khodachenko ◽  
I. F. Shaikhislamov ◽  
A. G. Berezutsky ◽  
I. B. Miroshnichenko ◽  
...  

AbstractSelf-Consistent 2D modelling of stellar wind interaction with the upper atmosphere of WASP-12b has been performed. The two case-scenarios of the planetary material escape and interaction with the stellar wind, namely the ‘blown by the wind’ (without the inclusion of tidal force) and ‘captured by the star’ (with the tidal force) have been modelled under different stellar XUV radiations and stellar wind parameters. In the first scenario, a shock is formed around the planet, and the planetary mass loss is controlled completely by the stellar radiation energy input. In the second scenario, the mass loss is mainly due to the gravitational interaction effects. The dynamics of MGII and related absorption were modelled with three sets of different stellar wind parameters and XUV flux values.

Author(s):  
Carolina Villarreal D’Angelo ◽  
Aline A Vidotto ◽  
Alejandro Esquivel ◽  
Gopal Hazra ◽  
Allison Youngblood

Abstract The GJ 436 planetary system is an extraordinary system. The Neptune-size planet that orbits the M3 dwarf revealed in the Lyα line an extended neutral hydrogen atmosphere. This material fills a comet-like tail that obscures the stellar disc for more than 10 hours after the planetary transit. Here, we carry out a series of 3D radiation hydrodynamic simulations to model the interaction of the stellar wind with the escaping planetary atmosphere. With these models, we seek to reproduce the $\sim 56\%$ absorption found in Lyα transits, simultaneously with the lack of absorption in Hα transit. Varying the stellar wind strength and the EUV stellar luminosity, we search for a set of parameters that best fit the observational data. Based on Lyα observations, we found a stellar wind velocity at the position of the planet to be around [250-460] km s−1 with a temperature of [3 − 4] × 105 K. The stellar and planetary mass loss rates are found to be 2 × 10−15 M⊙ yr−1 and ∼[6 − 10] × 109 g s−1, respectively, for a stellar EUV luminosity of [0.8 − 1.6] × 1027 erg s−1. For the parameters explored in our simulations, none of our models present any significant absorption in the Hα line in agreement with the observations.


2021 ◽  
Author(s):  
Manuel Lampón ◽  
Manuel López-Puertas ◽  
Alejandro Sánchez-López ◽  
Stefan Czesla ◽  
Jorge Sanz-Forcada ◽  
...  

<p>Hydrodynamic escape is the most efficient atmospheric mechanism of planetary mass loss and has a large impact on planetary evolution. However, the lack of observations remained this mechanism poorly understood. Therefore, new observations of the He I triplet at 10830 Å provide key information to advance hydrodynamic escape knowledge. In this work, we analyse the hydrodynamic escape of three exoplanets, HD209458 b, HD189733 b, and GJ 3470 b via an analysis of He triplet absorptions recently observed by the CARMENES high-resolution spectrograph, and their available Ly-alpha measurements, involving a 1D hydrodynamic model. We characterise the main upper atmospheric parameters, e.g.,  the temperature, the composition (H/He ratio), and the radial outflow velocity. We also study their hydrodynamic regime and show that HD209458 b is in the energy-limited regime, HD189733 b is in the recombination-limited regime, and GJ 3470 b is in the photon-limited regime. Details of this work can be found in [1], [2], [3].</p><p>References</p><p>[1] Lampón, M., López-Puertas, M., Lara, L.M., et al. 2020, A&A, 636, A13<br>[2] Lampón, M., López-Puertas, M., Sanz-Forcada, J., et al. 2021, A&A, 647, A129<br>[3] Lampón, M., López-Puertas, M., Czesla, S., et al. 2021, A&A, 648, L7</p>


Author(s):  
E. S. Kalinicheva ◽  
◽  
V. I. Shematovich ◽  
Ya. N. Pavlyuchenkov ◽  
◽  
...  

In this work we present the results of the modeling of exoplanet pi Men c upper atmosphere, produced using the previously developed one-dimensional self-consistent aeronomic model. The model used takes into account the contribution of suprathermal particles, which significantly refines the heating function of the atmosphere. The hight profiles of temperature, velocity and density were obtained, the atmospheric mass-loss rate was calculated. The presence of two hight-scales in the structure of the atmosphere was found: the first corresponds to a relatively dense stationary atmosphere, the second to a more rarefied corona.


1979 ◽  
Vol 83 ◽  
pp. 235-240 ◽  
Author(s):  
David C. Abbott

Previous work by Castor, Abbott, and Klein (1975) presented a self-consistent model of a steady-state stellar wind. They also showed qualitatively that for O stars at least a static atmosphere could not exist. This paper extends that result by calculating in detail the minimum luminosity as a function of effective temperature required for the line radiation force to exceed gravity. Within the observational and theoretical uncertainty there is a one-to-one correspondence between a star's calculated ability to self-initiate a stellar wind by radiation pressure alone and the observed presence of outflowing material in the UV resonance lines.


2020 ◽  
Vol 498 (1) ◽  
pp. L53-L57
Author(s):  
S Carolan ◽  
A A Vidotto ◽  
P Plavchan ◽  
C Villarreal D’Angelo ◽  
G Hazra

ABSTRACT Here, we study the dichotomy of the escaping atmosphere of the newly discovered close-in exoplanet AU Microscopii (AU Mic) b. On one hand, the high extreme-ultraviolet stellar flux is expected to cause a strong atmospheric escape in AU Mic b. On the other hand, the wind of this young star is believed to be very strong, which could reduce or even inhibit the planet’s atmospheric escape. AU Mic is thought to have a wind mass-loss rate that is up to 1000 times larger than the solar wind mass-loss rate ($\dot{\mathrm{ M}}_\odot$). To investigate this dichotomy, we perform 3D hydrodynamics simulations of the stellar wind–planetary atmosphere interactions in the AU Mic system and predict the synthetic Ly α transits of AU Mic b. We systematically vary the stellar wind mass-loss rate from a ‘no wind’ scenario to up to a stellar wind with a mass-loss rate of $1000~\dot{\mathrm{ M}}_\odot$. We find that, as the stellar wind becomes stronger, the planetary evaporation rate decreases from 6.5 × 1010  g s−1 to half this value. With a stronger stellar wind, the atmosphere is forced to occupy a smaller volume, affecting transit signatures. Our predicted Ly α absorption drops from $\sim 20{{\ \rm per\ cent}}$ in the case of ‘no wind’ to barely any Ly α absorption in the extreme stellar wind scenario. Future Ly α transits could therefore place constraints not only on the evaporation rate of AU Mic b, but also on the mass-loss rate of its host star.


2020 ◽  
Vol 500 (3) ◽  
pp. 3382-3393
Author(s):  
S Carolan ◽  
A A Vidotto ◽  
C Villarreal D’Angelo ◽  
G Hazra

ABSTRACT We use 3D hydrodynamics simulations followed by synthetic line profile calculations to examine the effect increasing the strength of the stellar wind has on observed Ly α transits of a hot Jupiter (HJ) and a warm Neptune (WN). We find that increasing the stellar wind mass-loss rate from 0 (no wind) to 100 times the solar mass-loss rate value causes reduced atmospheric escape in both planets (a reduction of 65 per cent and 40 per cent for the HJ and WN, respectively, compared to the ‘no wind’ case). For weaker stellar winds (lower ram pressure), the reduction in planetary escape rate is very small. However, as the stellar wind becomes stronger, the interaction happens deeper in the planetary atmosphere, and, once this interaction occurs below the sonic surface of the planetary outflow, further reduction in evaporation rates is seen. We classify these regimes in terms of the geometry of the planetary sonic surface. ‘Closed’ refers to scenarios where the sonic surface is undisturbed, while ‘open’ refers to those where the surface is disrupted. We find that the change in stellar wind strength affects the Ly α transit in a non-linear way (note that here we do not include charge-exchange processes). Although little change is seen in planetary escape rates (≃ 5.5 × 1011 g s−1) in the closed to partially open regimes, the Ly α absorption (sum of the blue [−300, −40 km s−1] and red [40, 300 km s−1] wings) changes from 21 to 6 per cent as the stellar wind mass-loss rate is increased in the HJ set of simulations. For the WN simulations, escape rates of ≃ 6.5 × 1010 g s−1 can cause transit absorptions that vary from 8.8 to 3.7 per cent, depending on the stellar wind strength. We conclude that the same atmospheric escape rate can produce a range of absorptions depending on the stellar wind and that neglecting this in the interpretation of Ly α transits can lead to underestimation of planetary escape rates.


1979 ◽  
Vol 83 ◽  
pp. 431-445 ◽  
Author(s):  
Peter S. Conti

The stellar wind mass loss rates of at least some single Of type stars appear to be sufficient to remove much if not all of the hydrogen-rich envelope such that nuclear processed material is observed at the surface. This highly evolved state can then be naturally associated with classic Population I WR stars that have properties of high luminosity for their mass, helium enriched composition, and nitrogen or carbon enhanced abundances. If stellar wind mass loss is the dominant process involved in this evolutionary scenario, then stars with properties intermediate between Of and WR types should exist. The stellar parameters of luminosity, temperature, mass and composition are briefly reviewed for both types. All late WN stars so far observed are relatively luminous like Of stars, and also contain hydrogen. All early WN stars, and WC stars, are relatively faint and contain little or no hydrogen. The late WN stars seem to have the intermediate properties required if a stellar wind is the dominant mass loss mechanism that transforms an Of star to a WR type.


2021 ◽  
Author(s):  
Peter Wurz ◽  
Audrey Vorburger ◽  
Alfred McEwen ◽  
Kathy Mandt ◽  
Ashley Davies ◽  
...  

<p>The Io Volcano Observer (IVO) is a proposed NASA Discovery-class mission (currently in Phase A), that would launch<span> in early 2029, arrive at </span> Jupiter in the early 2033, and perform ten flybys of Io while in Jupiter's orbit. IVO's mission motto is to 'follow the heat', shedding light onto tidal heating as a fundamental planetary process. Specifically, IVO will determine (i) how and where heat is generated in Io's interior, (ii) how heat is transported to the surface, and (iii) how Io has evolved with time. The answers to these questions will fill fundamental gaps in the current understanding of the evolution and habitability of many worlds across our Solar System and beyond where tidal heating plays a key role, and will give us insight into how early Earth, Moon, and Mars may have worked.</p><p>One of the five key science questions IVO will be addressing is determining Io's mass loss via atmospheric escape. Understanding Io's mass loss today will offer information on how the chemistry of Io has been altered from its initial state and would provide useful clues on how atmospheres on other bodies have evolved over time. IVO plans on measuring Io's mass loss in situ with the Ion and Neutral Mass Spectrometer (INMS), a successor to the instrument currently being built for the JUpiter Icy moons Explorer (JUICE). INMS will measure neutrals and ions in the mass range 1 – 300 u, with a mass resolution (M/ΔM) of 500, a dynamic range of > 10<sup>5</sup>, a detection threshold of 100 cm<sup>–3</sup> for an integration time of 5 s, and a cadence of 0.5 – 300 s per spectrum.</p><p>In preparation for IVO, we model atmospheric density profiles of species known and expected to be present on Io's surface from both measurements and previous modelling efforts. Based on the IVO mission design, we present three different measurement scenarios for INMS we expect to encounter at Io based on the planned flybys: (i) a purely sublimated atmosphere, (ii) the 'hot' atmosphere generated by lava fields, and (iii) the plume gases resulting from volcanic activity. We calculate the expected mass spectra to be recorded by INMS during these flybys for these atmospheric scenarios.</p>


2020 ◽  
Vol 494 (2) ◽  
pp. 2417-2428 ◽  
Author(s):  
A A Vidotto ◽  
A Cleary

ABSTRACT The atmospheres of highly irradiated exoplanets are observed to undergo hydrodynamic escape. However, due to strong pressures, stellar winds can confine planetary atmospheres, reducing their escape. Here, we investigate under which conditions atmospheric escape of close-in giants could be confined by the large pressure of their host star’s winds. For that, we simulate escape in planets at a range of orbital distances ([0.04, 0.14] au), planetary gravities ([36, 87 per cent] of Jupiter’s gravity), and ages ([1, 6.9] Gyr). For each of these simulations, we calculate the ram pressure of these escaping atmospheres and compare them to the expected stellar wind external pressure to determine whether a given atmosphere is confined or not. We show that although younger close-in giants should experience higher levels of atmospheric escape, due to higher stellar irradiation, stellar winds are also stronger at young ages, potentially reducing escape of young exoplanets. Regardless of the age, we also find that there is always a region in our parameter space where atmospheric escape is confined, preferably occurring at higher planetary gravities and orbital distances. We investigate confinement of some known exoplanets and find that the atmosphere of several of them, including π Men c, should be confined by the winds of their host stars, thus potentially preventing escape in highly irradiated planets. Thus, the lack of hydrogen escape recently reported for π Men c could be caused by the stellar wind.


Sign in / Sign up

Export Citation Format

Share Document