scholarly journals Characterisation of the hydrodynamic atmospheric escape of HD 209458 b, HD 189733 b, and GJ 3470 b

2021 ◽  
Author(s):  
Manuel Lampón ◽  
Manuel López-Puertas ◽  
Alejandro Sánchez-López ◽  
Stefan Czesla ◽  
Jorge Sanz-Forcada ◽  
...  

<p>Hydrodynamic escape is the most efficient atmospheric mechanism of planetary mass loss and has a large impact on planetary evolution. However, the lack of observations remained this mechanism poorly understood. Therefore, new observations of the He I triplet at 10830 Å provide key information to advance hydrodynamic escape knowledge. In this work, we analyse the hydrodynamic escape of three exoplanets, HD209458 b, HD189733 b, and GJ 3470 b via an analysis of He triplet absorptions recently observed by the CARMENES high-resolution spectrograph, and their available Ly-alpha measurements, involving a 1D hydrodynamic model. We characterise the main upper atmospheric parameters, e.g.,  the temperature, the composition (H/He ratio), and the radial outflow velocity. We also study their hydrodynamic regime and show that HD209458 b is in the energy-limited regime, HD189733 b is in the recombination-limited regime, and GJ 3470 b is in the photon-limited regime. Details of this work can be found in [1], [2], [3].</p><p>References</p><p>[1] Lampón, M., López-Puertas, M., Lara, L.M., et al. 2020, A&A, 636, A13<br>[2] Lampón, M., López-Puertas, M., Sanz-Forcada, J., et al. 2021, A&A, 647, A129<br>[3] Lampón, M., López-Puertas, M., Czesla, S., et al. 2021, A&A, 648, L7</p>

2021 ◽  
Vol 647 ◽  
pp. A129
Author(s):  
M. Lampón ◽  
M. López-Puertas ◽  
J. Sanz-Forcada ◽  
A. Sánchez-López ◽  
K. Molaverdikhani ◽  
...  

Characterising the atmospheres of exoplanets is key to understanding their nature and provides hints about their formation and evolution. High resolution measurements of the helium triplet absorption of highly irradiated planets have been recently reported, which provide a new means of studying their atmospheric escape. In this work we study the escape of the upper atmospheres of HD 189733 b and GJ 3470 b by analysing high resolution He I triplet absorption measurements and using a 1D hydrodynamic spherically symmetric model coupled with a non-local thermodynamic model for the He I triplet state. We also use the H density derived from Lyα observations to further constrain their temperatures, mass-loss rates, and H/He ratios. We have significantly improved our knowledge of the upper atmospheres of these planets. While HD 189733 b has a rather compressed atmosphere and small gas radial velocities, GJ 3470 b, on the other hand with a gravitational potential ten times smaller, exhibits a very extended atmosphere and large radial outflow velocities. Hence, although GJ 3470 b is much less irradiated in the X-ray and extreme ultraviolet radiation, and its upper atmosphere is much cooler, it evaporates at a comparable rate. In particular, we find that the upper atmosphere of HD 189733 b is compact and hot, with a maximum temperature of 12 400−300+400 K, with a very low mean molecular mass (H/He = (99.2/0.8) ± 0.1), which is almost fully ionised above 1.1 RP, and with a mass-loss rate of (1.1 ± 0.1) × 1011 g s−1. In contrast, the upper atmosphere of GJ 3470 b is highly extended and relatively cold, with a maximum temperature of 5100 ± 900 K, also with a very low mean molecular mass (H/He = (98.5/1.5)−1.5+1.0), which is not strongly ionised, and with a mass-loss rate of (1.9 ± 1.1) × 1011 g s−1. Furthermore, our results suggest that upper atmospheres of giant planets undergoing hydrodynamic escape tend to have a very low mean molecular mass (H/He ≳ 97/3).


2018 ◽  
Vol 14 (S345) ◽  
pp. 301-303
Author(s):  
N. K. Dwivedi ◽  
M. L. Khodachenko ◽  
I. F. Shaikhislamov ◽  
A. G. Berezutsky ◽  
I. B. Miroshnichenko ◽  
...  

AbstractSelf-Consistent 2D modelling of stellar wind interaction with the upper atmosphere of WASP-12b has been performed. The two case-scenarios of the planetary material escape and interaction with the stellar wind, namely the ‘blown by the wind’ (without the inclusion of tidal force) and ‘captured by the star’ (with the tidal force) have been modelled under different stellar XUV radiations and stellar wind parameters. In the first scenario, a shock is formed around the planet, and the planetary mass loss is controlled completely by the stellar radiation energy input. In the second scenario, the mass loss is mainly due to the gravitational interaction effects. The dynamics of MGII and related absorption were modelled with three sets of different stellar wind parameters and XUV flux values.


2018 ◽  
Author(s):  
Paul M. Schenk ◽  
◽  
Britney E. Schmidt ◽  
Hanna G. Sizemore ◽  
Carle M. Pieters ◽  
...  

Author(s):  
Carolina Villarreal D’Angelo ◽  
Aline A Vidotto ◽  
Alejandro Esquivel ◽  
Gopal Hazra ◽  
Allison Youngblood

Abstract The GJ 436 planetary system is an extraordinary system. The Neptune-size planet that orbits the M3 dwarf revealed in the Lyα line an extended neutral hydrogen atmosphere. This material fills a comet-like tail that obscures the stellar disc for more than 10 hours after the planetary transit. Here, we carry out a series of 3D radiation hydrodynamic simulations to model the interaction of the stellar wind with the escaping planetary atmosphere. With these models, we seek to reproduce the $\sim 56\%$ absorption found in Lyα transits, simultaneously with the lack of absorption in Hα transit. Varying the stellar wind strength and the EUV stellar luminosity, we search for a set of parameters that best fit the observational data. Based on Lyα observations, we found a stellar wind velocity at the position of the planet to be around [250-460] km s−1 with a temperature of [3 − 4] × 105 K. The stellar and planetary mass loss rates are found to be 2 × 10−15 M⊙ yr−1 and ∼[6 − 10] × 109 g s−1, respectively, for a stellar EUV luminosity of [0.8 − 1.6] × 1027 erg s−1. For the parameters explored in our simulations, none of our models present any significant absorption in the Hα line in agreement with the observations.


2021 ◽  
Author(s):  
Peter Wurz ◽  
Audrey Vorburger ◽  
Alfred McEwen ◽  
Kathy Mandt ◽  
Ashley Davies ◽  
...  

<p>The Io Volcano Observer (IVO) is a proposed NASA Discovery-class mission (currently in Phase A), that would launch<span> in early 2029, arrive at </span> Jupiter in the early 2033, and perform ten flybys of Io while in Jupiter's orbit. IVO's mission motto is to 'follow the heat', shedding light onto tidal heating as a fundamental planetary process. Specifically, IVO will determine (i) how and where heat is generated in Io's interior, (ii) how heat is transported to the surface, and (iii) how Io has evolved with time. The answers to these questions will fill fundamental gaps in the current understanding of the evolution and habitability of many worlds across our Solar System and beyond where tidal heating plays a key role, and will give us insight into how early Earth, Moon, and Mars may have worked.</p><p>One of the five key science questions IVO will be addressing is determining Io's mass loss via atmospheric escape. Understanding Io's mass loss today will offer information on how the chemistry of Io has been altered from its initial state and would provide useful clues on how atmospheres on other bodies have evolved over time. IVO plans on measuring Io's mass loss in situ with the Ion and Neutral Mass Spectrometer (INMS), a successor to the instrument currently being built for the JUpiter Icy moons Explorer (JUICE). INMS will measure neutrals and ions in the mass range 1 – 300 u, with a mass resolution (M/ΔM) of 500, a dynamic range of > 10<sup>5</sup>, a detection threshold of 100 cm<sup>–3</sup> for an integration time of 5 s, and a cadence of 0.5 – 300 s per spectrum.</p><p>In preparation for IVO, we model atmospheric density profiles of species known and expected to be present on Io's surface from both measurements and previous modelling efforts. Based on the IVO mission design, we present three different measurement scenarios for INMS we expect to encounter at Io based on the planned flybys: (i) a purely sublimated atmosphere, (ii) the 'hot' atmosphere generated by lava fields, and (iii) the plume gases resulting from volcanic activity. We calculate the expected mass spectra to be recorded by INMS during these flybys for these atmospheric scenarios.</p>


2021 ◽  
Author(s):  
Katerina Spanoudaki ◽  
George Zodiatis ◽  
Nikos Kampanis ◽  
Maria Luisa Quarta ◽  
Marco Folegani ◽  
...  

<p>The coastal area of Crete is an area of increasing interest due to the recent hydrocarbon exploration and exploitation activities in the Eastern Mediterranean Sea and the increase of the maritime transport after the enlargement of the Suez Canal. National and local authorities, like ports and the coast guard, who are involved in maritime safety, such as oil spill prevention, the tourism industry and policy makers involved in coastal zone management, are key end users’ groups who can benefit from high spatial and temporal resolution forecasting products and information to support their maritime activities in the coastal sea area of the island. To support local end users and response agencies to strengthen their capacities in maritime safety and marine conservation, a high-resolution, operational forecasting system, has been developed for the coastal area of Crete. The COASTAL CRETE forecasting system implements advanced numerical hydrodynamic and sea state models, nested in CMEMS Med MFC products and produces, on a daily basis, 5-day hourly and 6-hourly averaged high-resolution forecasts of important marine parameters, such as sea currents, temperature, salinity and waves. The COASTAL CRETE high-resolution (~ 1km) hydrodynamic model is based on a modified POM parallel code implemented by CYCOFOS in the Eastern Mediterranean and the Levantine Basin, while for wave forecasts, the latest ECMWF CY46R1 parallel version including a number of new features, a state-of-the-art wave analysis and prediction model, with high accuracy in both shallow and deep waters has been implemented with a resolution of ~1.8 km. The COASTAL CRETE hydrodynamic model has been evaluated against the CMEMS Med MFC model and with satellite Sea Surface Temperature data with good statistical estimates. The COASTAL CRETE wave model is calibrated with in-situ data provided from the HCMR buoy network operating in the area. Both the CMEMS Med MFC products and COASTAL CRETE forecasts are made available through a customized instance of ADAM (Advanced geospatial Data Management platform) developed by MEEO S.r.l. (https://explorer-coastal-crete.adamplatform.eu/). This application provides automatic data exchange management capabilities between the CMEMS Med MFC and the COASTAL CRETE models, enabling data visualization, combination, processing and download through the implementation of the Digital Earth concept. Among the numerous functionalities of the platform, a depth slider allows to explore the COASTAL CRETE products through the depth dimension, and a sea current magnitude feature enables the visualization of the currents vectors by overlaying them to any available product/parameter, thus allowing comparisons and correlations. The downscaled high-resolution COASTAL CRETE forecasts will be used to deliver on demand information and services in the broader objectives of the maritime safety, particularly for oil spill and floating objects/marine litters predictions. Such a use case is presented for the port area of Heraklion, implementing nested fine grid hydrodynamic and oil spill models (MEDSLIK-II).</p><p>Acknowledgement: Copernicus Marine Environment Monitoring Service (CMEMS) DEMONSTRATION COASTAL-MED SEA. COASTAL-CRETE, Contract: 110-DEM5-L3.</p>


1986 ◽  
Vol 144 (3) ◽  
pp. 317-327 ◽  
Author(s):  
M. E. Cantino ◽  
L. E. Wilkinson ◽  
M. K. Goddard ◽  
D. E. Johnson
Keyword(s):  

2021 ◽  
Author(s):  
Neha Groves ◽  
Ashwanth Srinivasan ◽  
Leonid Ivanov ◽  
Jill Storie ◽  
Drew Gustafson ◽  
...  

Abstract The Gulf of Mexico's unique circulation characteristics pose a particular threat to marine operations and play a significant role in driving the criteria used for design and life extension analyses of offshore infrastructure. Estimates from existing reanalysis datasets used by operators in GOM show less than ideal correlation with in situ measurements and have a limited resolution that disallows for the capture of ocean features of interest. In this paper, we introduce a new high-resolution long-term reanalysis dataset, Multi-resolution Advanced Current Reanalysis for the Ocean – Gulf of Mexico (MACRO-GOM), based on a state-of the-science hydrodynamic model configured specifically for ocean current forecasting and hindcasting services for the offshore industry that assimilates extensive non-conventional observational data. The underlying hydrodynamic model used is the Woods Hole Group – Tendral Ocean Prediction System (WHG-TOPS). MACRO-GOM is being developed at the native resolution of the TOPS-GOM domain, i.e. 1/32° (~3 km) hourly grid for the 1994-2019 time period (25 years). A 3-level downscaling methodology is used wherein observation based estimates are first dynamically interpolated using a 1/4° model before being downscaled to the 1/16° Inter-American Seas (IAS) domain, which in turn is used to generate time-consistent boundary conditions for the 1/32° reanalysis. A multiscale data assimilation technique is used to constrain the model at synoptic and longer time scales. For this paper, a shorter, 5-year reanalysis run was conducted for the 2015-2019 time period for verification against assimilated and unassimilated observations, WHG's proprietary frontal analyses, and other reanalyses. Both the frontal analyses and Notice to Lesses (NTL) rig mounted ADCP data was withheld from assimilation for comparison. Offshore operations in the GOM can benefit from an improved reanalysis dataset capable of assimilating existing non-conventional observational datasets. Existing hindcast and reanalysis model datasets are limited in their ability to comprehensively and reliably quantify the 3D circulation and kinematic properties of the main features partly because of limited assimilation of observational data. MACRO-GOM incorporates all the advantages of available HYCOM-based reanalyses and further enhances the resolution, accuracy, and reliability by the assimilation of over three decades of WHG's proprietary datasets and frontal analyses for continuous model correction and ground-truthing. The final 25-year high resolution dataset will provide highly reliable design and operational criteria for new and existing infrastructure in GOM.


1987 ◽  
Vol 122 ◽  
pp. 449-450
Author(s):  
Raman K. Prinja ◽  
Ian D. Howarth

The most sensitive indicators of mass-loss for stars in the upper left part of the HR diagram are the UV P Cygni profiles observed in the resonance lines of common ions such as N V, Si IV, and C IV. We present here some results from a study of these lines in the high resolution IUE spectra of 197 Ï stars. Profile fits were carried out in the manner described by Prinja & Howarth (1986) for all unsaturated P Cygni resonance doublets. The parameterisations adopted enable the product of mass-loss rate (Ṁ) and ion fraction (qi) to be determined at a given velocity, such that Ṁ qi°C Ni R* v∞, where Ni is the column density of the observed ion i, v∞ is the terminal velocity, and R⋆ is the stellar radius. The accompanying figures illustrate the behaviour of Ṁ qi (evaluated at 0.5 v∞) for N V and C IV.


1999 ◽  
Vol 193 ◽  
pp. 69-70
Author(s):  
Garik Israelian ◽  
Artemio Herrero ◽  
E. Santolaya-Rey ◽  
A. Kaufer ◽  
F. Musaev ◽  
...  

We report radial velocity studies of photospheric absorption lines from spectral time series of the late O-type runaway supergiant HD 188209. Radial velocity variations with a quasi-period ∼ 2 days have been detected in high-resolution echelle spectra and most probably indicate that the supergiant is pulsating. Night-to-night variations in the position and strength of the central emission reversal of the Hα profile have been observed. The fundamental parameters of the star have been derived using state-of-the-art plane-parallel and unified non-LTE model atmospheres, these last including the mass-loss rate. The binary nature of this star is not suggested either from Hipparcos photometry or from radial-velocity curves.


Sign in / Sign up

Export Citation Format

Share Document