Globular Cluster — Bulge connection: Population synthesis models with multiple populations

2019 ◽  
Vol 14 (S351) ◽  
pp. 277-280
Author(s):  
Chul Chung ◽  
Young-Wook Lee ◽  
Dongwook Lim ◽  
Seungsoo Hong ◽  
Jenny J. Kim ◽  
...  

AbstractRecent analyses of Lee et al. (2018, 2019) have confirmed that Galactic bulge consists of stellar populations originated from Milky Way globular clusters (MWGCs). Motivated by this, here we present the evolutionary population synthesis (EPS) for the Galactic bulge and early-type galaxies (ETGs) with the realistic treatment of individual variations in light elements observed in the MWGCs. We have utilized our model with GC-origin populations to explain the CN spread observed in ETGs, and the results show remarkable matches with the observations. We further employ our model to estimate the age of ETGs, which are considered as good analogs for the MW bulge. We find that, without the effect of our new treatments, EPS models will almost always underestimate the true age of ETGs. Our analysis indicates that the EPS with GC-origin populations is an essential constraint in determining the ETG formation epoch and is closely related to understanding the evolution of the Universe.

2020 ◽  
Vol 635 ◽  
pp. A125
Author(s):  
Fu-Chi Yeh ◽  
Giovanni Carraro ◽  
Vladimir I. Korchagin ◽  
Camilla Pianta ◽  
Sergio Ortolani

Context. Globular clusters in the Milky Way are thought to have either an in situ origin, or to have been deposited in the Galaxy by past accretion events, like the spectacular Sagittarius dwarf galaxy merger. Aims. We probe the origin of the recently discovered globular cluster FSR 1758, often associated with some past merger event and which happens to be projected toward the Galactic bulge. We performed a detailed study of its Galactic orbit, and assign it to the most suitable Galactic component. Methods. We employed three different analytical time-independent potential models to calculate the orbit of the cluster by using the Gauss Radau spacings integration method. In addition, a time-dependent bar potential model is added to account for the influence of the Galactic bar. We ran a large suite of simulations via a Montecarlo method to account for the uncertainties in the initial conditions. Results. We confirm previous indications that the globular cluster FSR 1758 possesses a retrograde orbit with high eccentricity. The comparative analysis of the orbital parameters of star clusters in the Milky Way, in tandem with recent metallicity estimates, allows us to conclude that FSR 1758 is indeed a Galactic bulge intruder. The cluster can therefore be considered an old metal-poor halo globular cluster formed in situ that is passing right now in the bulge region. Its properties, however, can be roughly accounted for by also assuming that the cluster is part of some stream of extra-Galactic origin. Conclusions. We conclude that assessing the origin, either Galactic or extra-galactic, of globular clusters is surely a tantalising task. In any case, by using an Occam’s razor argument, we tend to prefer an in situ origin for FSR 1758.


2009 ◽  
Vol 5 (S266) ◽  
pp. 157-160
Author(s):  
D. Yong ◽  
J. Meléndez ◽  
K. Cunha ◽  
A. I. Karakas ◽  
J. E. Norris ◽  
...  

AbstractWe present abundance measurements in the tidally disrupted globular cluster NGC 6712. In this cluster, there are large star-to-star variations of the light elements C, N, O, F and Na. While such abundance variations are seen in every well-studied globular cluster, they are not found in field stars and indicate that clusters like NGC 6712 cannot provide many field stars and/or field stars do not form in environments with chemical-enrichment histories like those of NGC 6712. Preliminary analysis of NGC 5466, another tidally disrupted cluster, suggests little (if any) abundance variation for O and Na and the abundance ratios [X/Fe] are comparable to field stars at the same metallicity. Therefore, globular clusters like NGC 5466 may have been Galactic building blocks.


1988 ◽  
Vol 126 ◽  
pp. 37-48
Author(s):  
Robert Zinn

Harlow Shapley (1918) used the positions of globular clusters in space to determine the dimensions of our Galaxy. His conclusion that the Sun does not lie near the center of the Galaxy is widely recognized as one of the most important astronomical discoveries of this century. Nearly as important, but much less publicized, was his realization that, unlike stars, open clusters, HII regions and planetary nebulae, globular clusters are not concentrated near the plane of the Milky Way. His data showed that the globular clusters are distributed over very large distances from the galactic plane and the galactic center. Ever since this discovery that the Galaxy has a vast halo containing globular clusters, it has been clear that these clusters are key objects for probing the evolution of the Galaxy. Later work, which showed that globular clusters are very old and, on average, very metal poor, underscored their importance. In the spirit of this research, which started with Shapley's, this review discusses the characteristics of the globular cluster system that have the most bearing on the evolution of the Galaxy.


1996 ◽  
Vol 169 ◽  
pp. 403-410
Author(s):  
R.M. Rich

It is reasonable to say that if Jan Oort were alive today, he would no doubt find recent developments in the study of the Galactic bulge to be fascinating. Oort considered the Galactic bulge in two contexts. First, he was interested in the use of the RR Lyrae stars as probes to determine the distance to the Galactic Center. No doubt, Oort would have been excited about the growing evidence of the bulge's triaxiality, as well as by the debate over the age of the bulge. His second interest was in the nature of activity at the center, an issue that I will not discuss in this review. The latter also remains an unsolved problem of the Milky Way, and (based on his work) one that might have been nearer to his heart than this one. Yet the question of when the bulge formed is ultimately a question about the formation history of the Galaxy. The oldest stars (those whose ages we are certain of) are found in Galactic globular clusters, the sum total of which are ≈ 5 × 107M⊙. The field population of the bulge is ≈ 2–3 × 1010M⊙, an order of magnitude more massive than the field population of the metal poor spheroid. So if the bulge formed all at once, and early, then the Milky Way had a luminous, even cataclysmic youth. But if the bulge formed later in the history of our galaxy, as a starburst or dynamical instability of the central disk, then the young Milky Way may have been inconspicuous and primeval galaxies may be hard to find indeed. If our bulge formed very early, its stellar population might have much in common with the giant ellipticals, while a late bulge might teach us much about processes that affect galaxy evolution.


1983 ◽  
Vol 100 ◽  
pp. 359-364
Author(s):  
K. C. Freeman

In the Milky Way, the globular clusters are all very old, and we are accustomed to think of them as the oldest objects in the Galaxy. The clusters cover a wide range of chemical abundance, from near solar down to about [Fe/H] ⋍ −2.3. However there are field stars with abundances significantly lower than −2.3 (eg Bond, 1980); this implies that the clusters formed during the active phase of chemical enrichment, with cluster formation beginning at a time when the enrichment processes were already well under way.


2004 ◽  
Vol 194 ◽  
pp. 73-74
Author(s):  
T. J. Maccarone ◽  
A Kundu ◽  
S. E. Zepf ◽  
T. H. Puzia

AbstractWe summarize the key observations made in recent observations of X-ray sources in early-type galaxies. Typically about half of the X-ray binaries in early-type galaxies are in globular clusters, they are preferentially found in metal rich globular clusters, and there is no indication that cluster-age is an important parameter. Theoretical challenges are presented by these results.


1997 ◽  
Vol 189 ◽  
pp. 433-438 ◽  
Author(s):  
F. Pont ◽  
M. Mayor ◽  
C. Turon

The maximum age of galactic globular clusters provides the best observational constraint on the minimum age of the Universe. One of the main “missing link” in the globular cluster age determination has been the lack of a precise calibration, with local subdwarfs, of the position of the subdwarf sequence at different [Fe/H].Hipparcos data may change this situation. As many precise parallaxes become available for local subdwarfs, the distance to globular clusters can be estimated directly from ZAMS fitting to the subdwarf locus. The ages can then be inferred from the turnoff luminosity (a robust prediction of stellar evolution models), rather than using secondary indicators such as Horizontal-Branch position, or indicators depending on the uncertain colour scale such as turnoff colour.Combining Hipparcos parallaxes with [Fe/H] values determined with the CORAVEL spectrometer, we are studying the position of the subdwarfs in the Colour-Magnitude Diagram from a sample of more than 900 subdwarf candidates. Preliminary results are presented here. It is shown that the distances of many subdwarfs had been underestimated in previous studies, mainly because a large fraction of them is in fact evolved off the main sequence into the turnoff or the subgiant branch.


2019 ◽  
Vol 490 (2) ◽  
pp. 1498-1508
Author(s):  
Nicolas Longeard ◽  
Nicolas Martin ◽  
Rodrigo A Ibata ◽  
Michelle L M Collins ◽  
Benjamin P M Laevens ◽  
...  

ABSTRACT We present a photometric and spectroscopic study of the Milky Way satellite Laevens 3. Using MegaCam/Canada–France–Hawaii Telescope $g$ and $i$ photometry and Keck II/DEIMOS multi-object spectroscopy, we refine the structural and stellar properties of the system. The Laevens 3 colour–magnitude diagram shows that it is quite metal-poor, old ($13.0 \pm 1.0$ Gyr), and at a distance of $61.4 \pm 1.0$ kpc, partly based on two RR Lyrae stars. The system is faint ($M_V = -2.8^{+0.2}_{-0.3}$ mag) and compact ($r_h = 11.4 \pm 1.0$ pc). From the spectroscopy, we constrain the systemic metallicity (${\rm [Fe/H]}_\mathrm{spectro} = -1.8 \pm 0.1$ dex) but the metallicity and velocity dispersions are both unresolved. Using Gaia DR2, we infer a mean proper motion of $(\mu _\alpha ^*,\mu _\delta)=(0.51 \pm 0.28,-0.83 \pm 0.27)$ mas yr−1, which, combined with the system’s radial velocity ($\langle v_r\rangle = -70.2 \pm 0.5 {\rm \, km \,\, s^{-1}}$), translates into a halo orbit with a pericenter and apocenter of $40.7 ^{+5.6}_{-14.7}$ and $85.6^{+17.2}_{-5.9}$ kpc, respectively. Overall, Laevens 3 shares the typical properties of the Milky Way’s outer halo globular clusters. Furthermore, we find that this system shows signs of mass segregation that strengthens our conclusion that Laevens 3 is a globular cluster.


2011 ◽  
Vol 7 (S283) ◽  
pp. 408-409
Author(s):  
Alexander F. Kholtygin ◽  
Yulia V. Milanova ◽  
Igor' I. Nikiforov ◽  
Olga V. Vasyakina

AbstractModern data concerning the planetary nebulae (PNe) in the bulge, bar and disk of the Milky Way are used to study the chemical history of bulge. We show that the abundance pattern is similar for PNe in the bulge and Peimbert's type II PNe. We also found that the globular clusters (GCs), especially their metal-rich disk subsystem, form on metallicity maps a bar-like structure which parameters are very close to those for the Galactic bar. These results evidence an old age of the Galactic bulge and bar. We propose a scenario of the successive star formation in the bulge, bar and thin disk.


Author(s):  
Sofia Randich ◽  
Laura Magrini

Due to their production sites, as well as to how they are processed and destroyed in stars, the light elements are excellent tools to investigate a number of crucial issues in modern astrophysics: from stellar structure and non-standard processes at work in stellar interiors to age dating of stars; from pre-main sequence evolution to the star formation histories of young clusters and associations and to multiple populations in globular clusters; from Big Bang nucleosynthesis to the formation and chemical enrichment history of the Milky Way Galaxy and its populations, just to cite some relevant examples. In this paper, we focus on lithium, beryllium, and boron (LiBeB) and on carbon, nitrogen, and oxygen (CNO). LiBeB are rare elements, with negligible abundances with respect to hydrogen; on the contrary, CNO are among the most abundant elements in the Universe, after H and He. Pioneering observations of light-element surface abundances in stars started almost 70 years ago and huge progress has been achieved since then. Indeed, for different reasons, precise measurements of LiBeB and CNO are difficult, even in our Sun; however, the advent of state-of-the-art ground- and space-based instrumentation has allowed the determination of high-quality abundances in stars of different type, belonging to different Galactic populations, from metal-poor halo stars to young stars in the solar vicinity and from massive stars to cool dwarfs and giants. Noticeably, the recent large spectroscopic surveys performed with multifiber spectrographs have yielded detailed and homogeneous information on the abundances of Li and CNO for statistically significant samples of stars; this has allowed us to obtain new results and insights and, at the same time, raise new questions and challenges. A complete understanding of the light-element patterns and evolution in the Universe has not been still achieved. Perspectives for further progress will open up soon thanks to the new generation instrumentation that is under development and will come online in the coming years.


Sign in / Sign up

Export Citation Format

Share Document