scholarly journals Localising livestock protein feed production and the impact on land use and greenhouse gas emissions

animal ◽  
2014 ◽  
Vol 8 (8) ◽  
pp. 1339-1348 ◽  
Author(s):  
Y. Sasu-Boakye ◽  
C. Cederberg ◽  
S. Wirsenius
2018 ◽  
Vol 243 ◽  
pp. 940-952 ◽  
Author(s):  
Daniel Ruiz Potma Gonçalves ◽  
João Carlos de Moraes Sá ◽  
Umakant Mishra ◽  
Flávia Juliana Ferreira Furlan ◽  
Lucimara Aparecida Ferreira ◽  
...  

Atmósfera ◽  
2015 ◽  
Vol 28 (4) ◽  
pp. 243-250 ◽  
Author(s):  
Faradiella Mohd Kusin ◽  
◽  
Nurul Izzati Mat Akhir ◽  
Ferdaus Mahamat-Yusuff ◽  
Muhamad Auang ◽  
...  

2011 ◽  
pp. 224-228
Author(s):  
Uwe Lahl

The study proposes a regional approach to calculating indirect land use change (iLUC). The goal is to determine the greenhouse gas emissions (GHG) of biofuels brought about by iLUC in a specific region. A regional approach can be based on the conditions specific to the respective region and the data for this region which is contained in country statistics. This makes the results more resilient. It also appears that LUC is mainly caused locally or regionally. Relevant policy scenarios for different regions were calculated with a regional model. The calculations show reliable results. It is possible to introduce such a regional model in regulations for combating iLUC. The analysis of the policy options for combating iLUC shows that a regional approach would have a much more effective steering effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2008 ◽  
Vol 2008 (6) ◽  
pp. 783-792 ◽  
Author(s):  
Patricia Scanlan ◽  
Holly Elmendorf ◽  
Hari Santha ◽  
James Rowan

2006 ◽  
Vol 19 (13) ◽  
pp. 3055-3069 ◽  
Author(s):  
Peter A. Stott ◽  
John F. B. Mitchell ◽  
Myles R. Allen ◽  
Thomas L. Delworth ◽  
Jonathan M. Gregory ◽  
...  

Abstract This paper investigates the impact of aerosol forcing uncertainty on the robustness of estimates of the twentieth-century warming attributable to anthropogenic greenhouse gas emissions. Attribution analyses on three coupled climate models with very different sensitivities and aerosol forcing are carried out. The Third Hadley Centre Coupled Ocean–Atmosphere GCM (HadCM3), Parallel Climate Model (PCM), and GFDL R30 models all provide good simulations of twentieth-century global mean temperature changes when they include both anthropogenic and natural forcings. Such good agreement could result from a fortuitous cancellation of errors, for example, by balancing too much (or too little) greenhouse warming by too much (or too little) aerosol cooling. Despite a very large uncertainty for estimates of the possible range of sulfate aerosol forcing obtained from measurement campaigns, results show that the spatial and temporal nature of observed twentieth-century temperature change constrains the component of past warming attributable to anthropogenic greenhouse gases to be significantly greater (at the 5% level) than the observed warming over the twentieth century. The cooling effects of aerosols are detected in all three models. Both spatial and temporal aspects of observed temperature change are responsible for constraining the relative roles of greenhouse warming and sulfate cooling over the twentieth century. This is because there are distinctive temporal structures in differential warming rates between the hemispheres, between land and ocean, and between mid- and low latitudes. As a result, consistent estimates of warming attributable to greenhouse gas emissions are obtained from all three models, and predictions are relatively robust to the use of more or less sensitive models. The transient climate response following a 1% yr−1 increase in CO2 is estimated to lie between 2.2 and 4 K century−1 (5–95 percentiles).


GCB Bioenergy ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 627-644 ◽  
Author(s):  
Mark Richards ◽  
Mark Pogson ◽  
Marta Dondini ◽  
Edward O. Jones ◽  
Astley Hastings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document