Relationship between linoleic and α-linolenic acids in cooked meat odour development

2003 ◽  
Vol 2003 ◽  
pp. 204-204
Author(s):  
M.M. Campo ◽  
S.J. Elmore ◽  
G.R. Nute ◽  
J.D. Wood ◽  
D.S. Mottram ◽  
...  

During cooking, chemical reactions within the muscle produce volatile and non-volatile compounds characteristic of meat aroma and taste. Polyunsaturated fatty acids (PUFA) are essential in these reactions (Mottram and Edwards, 1983). In ruminants, differences in intramuscular PUFA composition have been classically associated with high n-3 content in grass fed animals and high n-6 content in concentrate fed animals. We investigated the effect on odour perception of in vitro reactions between linoleic and α-linolenic acids in the presence of cysteine and ribose, when they were present in ratios similar to those found in meat from animals reared on forage- or concentrate-based diets.

Reproduction ◽  
2010 ◽  
Vol 140 (6) ◽  
pp. 943-951 ◽  
Author(s):  
S E Kirkup ◽  
Z Cheng ◽  
M Elmes ◽  
D C Wathes ◽  
D R E Abayasekara

Diets or supplements high in n-3 and n-6 polyunsaturated fatty acids (PUFAs) have been shown to influence the timing of parturition. PUFAs are substrates for prostaglandin (PG) synthesis, and PGs play central roles in parturition. Hence, the effects of altering PUFA composition may be mediated through alterations in the type and relative quantities of PGs synthesised. Therefore, we have investigated the effects of a range of n-3 and n-6 PUFAsin vitroon PG synthesis by amnion cells of late gestation ewes. The n-6 PUFA, arachidonic acid (20:4, n-6), increased synthesis of two-series PGs. Degree of stimulation induced by the n-6 PUFAs was dependent on the position of the PUFA in the PG synthetic pathway, i.e. PG production of the two-series (principally prostaglandin E2:PGE2) increased progressively with longer chain PUFAs. Effects of n-3 PUFAs on output of PGE2were more modest and variable. The two shorter chain n-3 PUFAs, α-linolenic acid (18:3, n-3) and stearidonic acid (18:4, n-3), induced a small but significant increase in PGE2output, while the longest chain n-3 PUFA docosahexaenoic acid (22:6, n-3) inhibited PGE2synthesis. Dihomo-γ-linolenic acid (20:3, n-6), the PUFA substrate for synthesis of one-series PGs, induced an increase in PGE1generation and a decrease in PGE2and PGE3outputs. Hence, we have demonstrated that PUFA supplementation of ovine amnion cellsin vitroaffects the type and quantity of PGs synthesised.


Lipids ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 485-497 ◽  
Author(s):  
Sid Ahmed Merzouk ◽  
Meriem Saker ◽  
Karima Briksi Reguig ◽  
Nassima Soulimane ◽  
Hafida Merzouk ◽  
...  

2019 ◽  
Vol 103 (3) ◽  
pp. 925-934
Author(s):  
Eкaterina Vackova ◽  
Darko Bosnakovski ◽  
Bodil Bjørndal ◽  
Penka Yonkova ◽  
Natalia Grigorova ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3089
Author(s):  
Lukas M. Müller-Wirtz ◽  
Daniel Kiefer ◽  
Sven Ruffing ◽  
Timo Brausch ◽  
Tobias Hüppe ◽  
...  

Exhaled aliphatic aldehydes were proposed as non-invasive biomarkers to detect increased lipid peroxidation in various diseases. As a prelude to clinical application of the multicapillary column–ion mobility spectrometry for the evaluation of aldehyde exhalation, we, therefore: (1) identified the most abundant volatile aliphatic aldehydes originating from in vitro oxidation of various polyunsaturated fatty acids; (2) evaluated emittance of aldehydes from plastic parts of the breathing circuit; (3) conducted a pilot study for in vivo quantification of exhaled aldehydes in mechanically ventilated patients. Pentanal, hexanal, heptanal, and nonanal were quantifiable in the headspace of oxidizing polyunsaturated fatty acids, with pentanal and hexanal predominating. Plastic parts of the breathing circuit emitted hexanal, octanal, nonanal, and decanal, whereby nonanal and decanal were ubiquitous and pentanal or heptanal not being detected. Only pentanal was quantifiable in breath of mechanically ventilated surgical patients with a mean exhaled concentration of 13 ± 5 ppb. An explorative analysis suggested that pentanal exhalation is associated with mechanical power—a measure for the invasiveness of mechanical ventilation. In conclusion, exhaled pentanal is a promising non-invasive biomarker for lipid peroxidation inducing pathologies, and should be evaluated in future clinical studies, particularly for detection of lung injury.


Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 700
Author(s):  
Yohannes Abere Ambaw ◽  
Martin P. Pagac ◽  
Antony S. Irudayaswamy ◽  
Manfred Raida ◽  
Anne K. Bendt ◽  
...  

Malassezia are common components of human skin, and as the dominant human skin eukaryotic microbe, they take part in complex microbe–host interactions. Other phylogenetically related fungi (including within Ustilagomycotina) communicate with their plant host through bioactive oxygenated polyunsaturated fatty acids, generally known as oxylipins, by regulating the plant immune system to increase their virulence. Oxylipins are similar in structure and function to human eicosanoids, which modulate the human immune system. This study reports the development of a highly sensitive mass-spectrometry-based method to capture and quantify bioactive oxygenated polyunsaturated fatty acids from the human skin surface and in vitro Malassezia cultures. It confirms that Malassezia are capable of synthesizing eicosanoid-like lipid mediators in vitro in a species dependent manner, many of which are found on human skin. This method enables sensitive identification and quantification of bioactive lipid mediators from human skin that may be derived from metabolic pathways shared between skin and its microbial residents. This enables better cross-disciplinary and detailed studies to dissect the interaction between Malassezia and human skin, and to identify potential intervention points to promote or abrogate inflammation and to improve human skin health.


Placenta ◽  
2011 ◽  
Vol 32 (10) ◽  
pp. 752-756 ◽  
Author(s):  
Z. Cheng ◽  
M. Elmes ◽  
S. Kirkup ◽  
D.R.E. Abayasekara ◽  
D.C. Wathes

1978 ◽  
Vol 174 (2) ◽  
pp. 585-593 ◽  
Author(s):  
Catherine T. Hammer ◽  
Eric D. Wills

The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept constant. Stock diet and synthetic diets containing no fat, 10% corn oil, herring oil, coconut oil or lard were used. The fatty acid composition of the liver endoplasmic reticulum lipid was markedly dependent on the fatty acid composition of the dietary lipid. Feeding a herring-oil diet caused incorporation of 8.7% eicosapentaenoic acid (C20:5) and 17% docosahexaenoic acid (C22:6), but only 5.1% linoleic acid (C18:2) and 6.4% arachidonic acid (C20:4), feeding a corn-oil diet caused incorporation of 25.1% C18:2, 17.8% C20:4 and 2.5% C22:6 fatty acids, and feeding a lard diet caused incorporation of 10.3% C18:2, 13.5% C20:4 and 4.3% C22:6 fatty acids into the liver endoplasmic-reticulum lipids. Phenobarbitone injection (100mg/kg) decreased the incorporation of C20:4 and C22:6 fatty acids into the liver endoplasmic reticulum of rats fed on a lard, corn-oil or herring-oil diet. Microsomal lipid peroxide concentrations and rates of peroxidation in the presence of ascorbate depended on the nature and quantity of the polyunsaturated fatty acids in the diet. The lipid peroxide content was 1.82±0.30nmol of malonaldehyde/mg of protein and the rate of peroxidation was 0.60±0.08nmol of malonaldehyde/min per mg of protein after feeding a fat-free diet, and the values were increased to 20.80nmol of malonaldehyde/mg of protein and 3.73nmol of malonaldehyde/min per mg of protein after feeding a 10% herring-oil diet in which polyunsaturated fatty acids formed 24% of the total fatty acids. Addition of α-tocopherol to the diets (120mg/kg of diet) caused a very large decrease in the lipid peroxide concentration and rate of lipid peroxidation in the endoplasmic reticulum, but addition of the synthetic anti-oxidant 2,6-di-t-butyl-4-methylphenol to the diet (100mg/kg of diet) was ineffective. Treatment of the animals with phenobarbitone (1mg/ml of drinking water) caused a sharp fall in the rate of lipid peroxidation. It is concluded that the polyunsaturated fatty acid composition of the diet regulates the fatty acid composition of the liver endoplasmic reticulum, and this in turn is an important factor controlling the rate and extent of lipid peroxidation in vitro and possibly in vivo.


Meat Science ◽  
2003 ◽  
Vol 63 (3) ◽  
pp. 367-375 ◽  
Author(s):  
M.M Campo ◽  
G.R Nute ◽  
J.D Wood ◽  
S.J Elmore ◽  
D.S Mottram ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document