Comparing the In Vitro Antitumor, Antioxidant and Anti-Inflammatory Activities between Two New Very Long Chain Polyunsaturated Fatty Acids, Docosadienoic Acid (DDA) and Docosatrienoic Acid (DTA), and Docosahexaenoic Acid (DHA)

2020 ◽  
pp. 1-11
Author(s):  
Yi Chen ◽  
Xiao Qiu ◽  
Jian Yang
2010 ◽  
Vol 10 ◽  
pp. 676-712 ◽  
Author(s):  
Gerard L. Bannenberg

The enzymatic oxygenation of polyunsaturated fatty acids by lipoxygenases and cyclo-oxygenases is a resourceful mode of formation of specific autacoids that regulate the extent and pace of the inflammatory response. Arachidonate-derived eicosanoids, such as lipoxin A4, prostaglandin (PG)D2, PGF2α, PGE2, and PGD2-derived cyclopentenones exert specific roles in counter-regulating inflammation and turning on resolution. Recently recognized classes of autacoids derived from long-chain ω-3 polyunsaturated fatty acids, the E- and D-series resolvins, protectin D1, and maresin 1, act as specialized mediators to dampen inflammation actively, afford tissue protection, stimulate host defense, and activate resolution. It is held that counter-regulatory lipid mediators and the specific molecular pathways activated by such endogenous agonists may be suitable for pharmacological use in the treatment of inflammatory disease. The anti-inflammatory drug aspirin is a striking example of a drug that is able to act in such a manner, namely through triggering the formation of 15-epi-lipoxin A4and aspirin-triggered resolvins. Different aspects of the therapeutic applicability of lipid mediators have been addressed here, and indicate that the development of innovative pharmacotherapy based on anti-inflammatory and proresolution lipid mediators presents novel prospects for the treatment of inflammatory disease.


2012 ◽  
Vol 79 (5) ◽  
pp. 1573-1579 ◽  
Author(s):  
Yan Chen ◽  
Hsiang-yun Chi ◽  
Dauenpen Meesapyodsuk ◽  
Xiao Qiu

ABSTRACTThe effective flux between phospholipids and neutral lipids is critical for a high level of biosynthesis and accumulation of very-long-chain polyunsaturated fatty acids (VLCPUFAs), such as arachidonic acid (ARA; 20:4n-6), eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid (DHA; 22:6n-3). Here we describe a cDNA (PiCPT1) fromPhytophthora infestans, a VLCPUFA-producing oomycete, that may have a role in acyl trafficking between diacylglycerol (DAG) and phosphatidylcholine (PC) during the biosynthesis of VLCPUFAs. The cDNA encodes a polypeptide of 393 amino acids with a conserved CDP-alcohol phosphotransferase motif and approximately 27% amino acid identity to theSaccharomyces cerevisiaecholinephosphotransferase (ScCPT1).In vitroassays indicate that PiCPT1 has high cholinephosphotransferase (CPT) activity but no ethanolaminephosphotransferase (EPT) activity. Substrate specificity assays show that it prefers VLCPUFA-containing DAGs, such as ARA DAG and DHA DAG, as substrates. Real-time PCR analysis reveals that expression ofPiCPT1was upregulated inP. infestansorganisms fed with exogenous VLCPUFAs. These results lead us to conclude that PiCPT1 is a VLCPUFA-specific CPT which may play an important role in shuffling VLCPUFAs from DAG to PC in the biosynthesis of VLCPUFAs inP. infestans.


2006 ◽  
Vol 42 (3) ◽  
pp. 287-292 ◽  
Author(s):  
Dennis R. Hoffman ◽  
Dianna K. H. Wheaton ◽  
Kathy J. James ◽  
Myla Tuazon ◽  
Deborah A. Diersen-Schade ◽  
...  

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Luke Durkin ◽  
Caroline Childs ◽  
Philip Calder

AbstractThe gut epithelium is a protective interface between the external environment and the human body. This epithelium interacts with a multitude of internal stimuli from the bloodstream and immune cells, and luminal stimuli from microorganisms and the diet. Disruptions to the epithelium are seen in inflammatory bowel diseases and coeliac disease. The human adenocarcinoma cell line (Caco-2) is an in vitro model used to assess the interactions between nutrients and gut epithelium. Long-chain omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have anti-inflammatory effects via the production of anti-inflammatory eicosanoids, interactions with immune cells and reductions in pro-inflammatory cytokines and chemokines. The aim of this study is to assess the anti-inflammatory properties of DHA and EPA in stimulated Caco-2 monolayers. Caco-2 cells were seeded at 70,000 cells/cm2 and grown to confluence before being allowed to fully differentiate (approx. 21 days total). Cytokines (TNF-α, IFN-γ, and IL-1β) and peptic-tryptic (PT-) gliadin were used as inflammatory stimulants. EPA and DHA incubations occurred 48 hours pre-stimulation. Tight junction function and morphology was determined using trans-epithelial electrical resistance measurements and confocal microscopy. Inflammatory markers, including IL-6, IL-8, and IL-17, were assessed by multiplex. Stimulatory cytokines induced tight junction dysfunction and increased pro-inflammatory mediator production in Caco-2 cells. PT-gliadin, DHA and EPA treatment did not alter paracellular permeability or stimulant-induced production of pro-inflammatory mediators. Further investigation of the inflammatory role of n-3 PUFAs and PT-gliadin in the Caco-2 model is required. Future work will assess the composition of PT-gliadin by electrophoresis and whether co-incubation of n-3 PUFAs and inflammatory cytokines will alter paracellular permeability and mediator output of Caco-2 cells.


2021 ◽  
Vol 53 (04) ◽  
pp. 186-188

Newell M et al. N-3 long-chain polyunsaturated fatty acids, eicosapentaenoic and docosahexaenoic acid, and the role of supplementation during cancer treatment: A scoping review of current clinical evidence. Cancers (Basel) 2021; 13: 1206. doi: 10.3390/cancers13061206


Sign in / Sign up

Export Citation Format

Share Document