Methane output from beef cattle fed different high-concentrate diets

2007 ◽  
Vol 2007 ◽  
pp. 46-46 ◽  
Author(s):  
C. Martin ◽  
H. Dubbroeucq ◽  
D. Micol ◽  
J. Agabriel ◽  
M. Doreau

Methane (CH4) is a greenhouse gas of which the release into the atmosphere is directly linked with animal agriculture, particularly ruminant production. CH4 emissions from ruminant also represent a loss in productive energy for the animal. Development of effective strategies to mitigate these methane emissions will have not only environmental benefits for the planet but also nutritional benefits for the animal. It has been shown that concentrate-rich diets result in a decrease in methanogenesis per unit of animal product (milk, meat). However, some of these diets may have adverse effects on the efficiency of production, e.g. due to risk of acidosis. Our study focused on measuring methane emissions on young bulls fed three contrasting finishing diets characteristics of three intensive levels of production in France.

1999 ◽  
Vol 50 (8) ◽  
pp. 1335 ◽  
Author(s):  
G. J. McCrabb ◽  
R. A. Hunter

The northern beef cattle herd accounts for more than half of Australia’s beef cattle population, and is a major source of anthropogenic methane emissions for Australia. National Greenhouse Gas Inventory predictions of methane output from Australian beef cattle are based on a predictive equation developed for British breeds of sheep and cattle offered temperate forage-based diets. However, tropical forage diets offered to cattle in northern Australia differ markedly from temperate forage-based diets used in the United Kingdom to develop the predictive equations. In this paper we review recent respiration chamber measurements of daily methane production for Brahman cattle offered a tropical forage or high grain diet, and compare them with values predicted using methodologies of the Australian National Greenhouse Gas Inventory Committee and the Intergovernmental Panel on Climate Change. We conclude that a reliable inventory of methane emissions for cattle in northern Australia can only be achieved after a wider range of tropical forage species has been investigated. Some opportunities for reducing methane emissions of beef cattle by dietary manipulation are discussed.


2021 ◽  
Vol 64 (6) ◽  
pp. 1781-1794
Author(s):  
David B. Parker ◽  
Kenneth D. Casey ◽  
Heidi Maria Waldrip ◽  
Byeng Min ◽  
Bryan L. Woodbury ◽  
...  

HighlightsOpen-lot beef cattle feedyards are a source of greenhouse gas emissions.Pen surface methane emissions were quantified during the cool and warm seasons.Methane was generated in the lower anaerobic layers of the manure pack.Methane emissions decreased after rainfall due to methane oxidation or blocking of pore space.Pen surface methane emissions accounted for <1% of overall feedyard GHG as CO2eq.Abstract. Texas is one of the top beef-producing states, where annually more than five million beef cattle are finished in large feedyards on earthen-surfaced pens. Manure deposited on open-lot pen surfaces can contribute to greenhouse gas (GHG) emissions such as methane (CH4). Two week-long sampling campaigns were conducted in April (cool season) and August (warm season) to quantify CH4 emissions from the feedyard pen surface. Emissions were monitored before and after 12.7 mm simulated rainfall events. Temporal and spatial variabilities in emissions were quantified using automated recirculating flux chambers, a multiplexer system, and a real-time CH4 analyzer. During the cool season, mean CH4 flux was 1.09 (SD ±2.39) and 0.12 (±0.25) g animal-1 d-1 before and after rainfall, respectively. During the warm season, mean CH4 flux was 0.65 (±1.01) and 0.26 (±0.44) g animal-1 d-1 before and after rainfall, respectively. This suggested that CH4 was produced in the lower, anaerobic layer of the manure pack and CH4 emissions were inhibited following rainfall, most likely due to microbial oxidation of CH4 in the upper layers through methanotrophy or from slowing of diffusion by blocking the manure pore space. The overall mean pen surface CH4 flux was 0.53 g animal-1 d-1. This flux accounted for a small percentage (<1%) of the overall estimated feedyard GHG emissions expressed as CO2eq. Thus, efforts to mitigate GHG from open-lot beef cattle feedyards in the Texas Panhandle should focus on sources with higher percentages of overall GHG, such as enteric methane, pen surface nitrous oxide, and nitrous oxide from fertilized cropland. Keywords: Beef cattle, Flux chamber, Greenhouse gas, Manure, Methane, Rainfall.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 132-133
Author(s):  
Karen A Beauchemin

Abstract Ruminant production systems need to embrace the challenge of reducing greenhouse gas emissions to be in sync with other sectors of society that are adopting net-zero emission goals. The major greenhouse gas from ruminants is enteric methane, which contributes 3% to 5% of total global greenhouse gases. A broad range of potential mitigation strategies has been proposed to decrease methane emissions from ruminants. One promising strategy is the investigational methane inhibitor 3-nitrooxypropanol (3-NOP; DSM Nutritional Products Ltd., Kaiseraugst, Switzerland), which when fed to beef cattle, has decreased methane yield (g methane/kg dry matter intake) by 20% to 80%, depending upon the diet composition and dose. Furthermore, the decrease in methane production persists over several months. 3-NOP reduces methanogenesis in the rumen by inactivating the enzyme methyl-coenzyme M reductase used by archaea. 3-NOP is most effective when incorporated into a total mixed ration. Some advantages of 3-NOP are: only a small dose is required (1–2 g/d); no negative effects on digestibility, animal health or carcass characteristics; rapid degradation to compounds naturally occurring in the rumen (e.g., nitrate, nitrite and 1,3-propanediol); sustained efficacy over time; and risk assessments indicate residues in meat and milk are unlikely. However, 3-NOP is not yet approved for commercial use. Research studies in small pens indicate up to 5% improvement in gain:feed ratio for backgrounding and finishing cattle, although recently completed studies at a commercial feedlot indicate improvements in feed conversion may be less. This presentation will highlight the current findings of beef cattle research using 3-NOP to decrease methane emissions, with emphasis on its potential for decreasing the carbon footprint of beef.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jennifer L. Owens ◽  
Ben W. Thomas ◽  
Jessica L. Stoeckli ◽  
Karen A. Beauchemin ◽  
Tim A. McAllister ◽  
...  

Abstract The investigative material 3-nitrooxypropanol (3-NOP) can reduce enteric methane emissions from beef cattle. North American beef cattle are often supplemented the drug monensin to improve feed digestibility. Residual and confounding effects of these additives on manure greenhouse gas (GHG) emissions are unknown. This research tested whether manure carbon and nitrogen, and GHG and ammonia emissions, differed from cattle fed a typical finishing diet and 3-NOP [125–200 mg kg−1 dry matter (DM) feed], or both 3-NOP (125–200 mg kg−1 DM) and monensin (33 mg kg−1 DM) together, compared to a control (no supplements) when manure was stockpiled or composted for 202 days. Consistent with other studies, cumulative GHGs (except nitrous oxide) and ammonia emissions were higher from composted compared to stockpiled manure (all P < 0.01). Dry matter, total carbon and total nitrogen mass balance estimates, and cumulative GHG and ammonia emissions, from stored manure were not affected by 3-NOP or monensin. During the current experiment, supplementing beef cattle with 3-NOP did not significantly affect manure GHG or NH3 emissions during storage under the tested management conditions, suggesting supplementing cattle with 3-NOP does not have residual effects on manure decomposition as estimated using total carbon and nitrogen losses and GHG emissions.


2020 ◽  
Author(s):  
Paul C. Stoy ◽  
Adam A. Cook ◽  
John E. Dore ◽  
William Kleindl ◽  
E. N. Jack Brookshire ◽  
...  

Abstract. American bison (Bison bison L.) have recovered from the brink of extinction over the past century. Bison reintroduction creates multiple environmental benefits, but their impacts on greenhouse gas emissions are poorly understood. Bison are thought to have produced some 2 Tg year−1 of the estimated 9–15 Tg year−1 of pre-industrial enteric methane emissions, but few contemporary measurements have been made due to their mobile grazing habits and safety issues associated with direct measurements. Here, we measure methane and carbon dioxide fluxes from a bison herd on an enclosed pasture during daytime periods in winter using eddy covariance. Methane emissions from the study area were negligible in the absence of bison (mean ± standard deviation = 0.0024 ± 0.042 μmol m−2 s−1) and were significantly greater than zero, 0.048 ± 0.082 μmol m−2 s−1 with a positively skewed distribution, when bison were present. We coupled an eddy covariance flux footprint analysis with bison location estimates from automated camera images to calculate a mean (median) methane flux of 38 μmol s−1 (22 μmol s−1) per animal, or 52 ± 14 g CH4 day−1 (31 g CH4 day−1), less than half of measured emission rates for range cattle. Emission estimates are subject to spatial uncertainty in bison location measurements and the flux footprint, but from our measurements there is no evidence that bison methane emissions exceed those from cattle. We caution however that our measurements were made during winter and that evening measurements of bison distributions were not possible using our approach. Annual measurements are ultimately necessary to determine the greenhouse gas burden of bison grazing systems. Eddy covariance is a promising technique for measuring ruminant methane emissions in conventional and alternate grazing systems and can be used to compare them going forward.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 195-196
Author(s):  
Ermias Kebreab ◽  
Mallory Honan ◽  
Breanna Roque ◽  
Juan Tricarico

Abstract Livestock production contributed 3.9% to the total greenhouse gas (GHG) emission from the US in 2018. Most studies to mitigate GHG from livestock are focused on enteric methane because it contributes about 70% of all livestock GHG emissions. Mitigation options can be broadly categorized into dietary and rumen manipulation. Enteric methane emissions are strongly correlated to dry matter intake and somewhat sensitive to diet composition. Dietary manipulation methods include increasing feed digestibility, such as concentrate to forage ratio, or increasing fats and oils, which are associated with lower methane emissions. These reduce digestible fiber that are positively related to methane production and more energy passing the rumen without being degraded, respectively. Rumen manipulation through feed additives can be further classified based on the mode of action: 1. rumen environment modifiers indirectly affecting emissions and 2. direct methanogenesis inhibitors. The rumen environment modifiers act on the conditions that promote methanogenesis. These include ionophores, plant bioactive compounds such as essential oils and tannins, and nitrate rich feeds that serve as alternative hydrogen sinks and directly compete with methanogens thereby reducing methane emissions. The inhibitor category include 3-nitroxypropanol and seaweeds containing halogenated compounds. The former was reported to reduce enteric methane emissions (g/d) by 39% in dairy and 22% in beef cattle. Seaweed, in particular Asparagopsis spp., reduced emissions intensity (g/kg milk) by up to 67% in dairy and emissions yield (g/kg dry matter intake) by up to 98% in beef cattle. Because inhibitors are structural analogs of methane, their mode of action is through competitive inhibition of the methyl transfer reaction catalyzed by methyl coenzyme-M reductase, the last enzyme in methanogenesis. The combination of dietary and rumen manipulation options, including feed additives, is expected to reduce enteric methane emissions by over 30% in the next decade without compromising animal productivity and health.


2017 ◽  
Vol 95 (8) ◽  
pp. 3425-3434
Author(s):  
R. G. Amachawadi ◽  
T. J. Purvis ◽  
B. V. Lubbers ◽  
J. W. Homm ◽  
C. L. Maxwell ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 448-449
Author(s):  
Emily Conlin ◽  
Herbert Lardner ◽  
Jennifer L Ellis ◽  
Ira B Mandell ◽  
Katharine M Wood

Abstract Worldwide, beef production systems represent a significant source of greenhouse gas (GHG), and enteric methane (CH4) emissions are the primary concern. The objective of this experiment was to determine whether biochar (Oregon Biochar Solution, White City, OR) supplementation can reduce CH4 emissions from grazing beef cows. Biochar is a stable form of carbon produced through the pyrolysis of organic matter (typically forestry waste). Sixty-four cows and their calves were blocked by cow body weight and calf age, and randomly allocated to 8 paddocks, each with 8 cow-calf pairs. Using a crossover design, each paddock was assigned to one of two treatments: (1) biochar supplemented at approximately 3% of estimated dry matter intake (DMI) or (2) control (no biochar). Biochar was incorporated into a pellet containing 45% biochar, 42.5% wheat midds, 10% canola oil, and 2.5% dry molasses and fed in a portable trough once daily. Each period consisted of 28 days: 21 days for biochar adaptation and 7 days for data collection. Enteric gas emissions from each paddock were measured using C-Lock GreenFeed trailers (C-Lock Inc., Rapid City, SD, USA) with pasture DMI estimated using paddock entry/exit quadrats during each sampling week. Enteric CH4 emissions expressed as g CH4/d were 249 and 260 ± 50.3 g (P ≥ 0.37) for control and biochar, respectively. Similarly, g CH4/kg DM and g CH4/kg BW were not affected (P ≥ 0.44) by biochar supplementation on pasture. Biochar supplementation did not affect estimated DMI or cow/calf body weights (P ≥ 0.15). Results suggest that biochar was ineffective for reducing methane emissions from grazing beef cows; however, measures of animal performance were not affected by biochar consumption. Further work is required to determine if type or higher inclusions of biochar can reduce CH4 emissions from beef cattle.


2011 ◽  
Vol 91 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Aklilu Alemu ◽  
K. H. Ominski ◽  
E. Kebreab

Alemu, A. W., Ominski, K. H. and Kebreab, E. 2011. Estimation of enteric methane emissions trends (1990–2008) from Manitoba beef cattle using empirical and mechanistic models. Can. J. Anim. Sci. 91: 305–321. The objective of this study was to estimate and assess trends in enteric methane (CH4) emissions from the Manitoba beef cattle population from the base year of 1990 to 2008 using mathematical models. Two empirical (statistical) models: Intergovernmental Panel on Climate Change (IPCC) Tier 2 and a nonlinear equation (Ellis), and two dynamic mechanistic models: MOLLY (v3) and COWPOLL were used. Beef cattle in Manitoba were categorized in to 29 distinct subcategories based on management practice, physiological status, gender, age and production environment. Data on animal performance, feeding and management practices and feed composition were collected from the literature as well as from provincial and national sources. Estimates of total enteric CH4 production from the Manitoba beef cattle population varied between 0.9 and 2.4 Mt CO2 eq. from 1990 to 2008. Regardless of the type of models used, average CH4 emissions for 2008 were estimated to be 45.2% higher than 1990 levels. More specifically, CH4 emissions tended to increase between 1990 and 1996. Emissions were relatively stable between 1996 and 2002, increased between 2003 and 2005, but declined by 13.2% between 2005 and 2008, following the same trend as that observed in the beef cattle population. Models varied in their estimates of CH4 conversion rate (Ym, percent gross energy intake), emission factor (kg CH4 head−1 yr−1) and CH4 production. Total CH4 production estimates ranged from 1.2 to 2.0 Mt CO2 eq. for IPCC Tier 2, from 0.9 to 1.5 Mt CO2 eq. for Ellis, from 1.3 to 2.1 Mt CO2 eq. for COWPOLL and from 1.5 to 2.4 Mt CO2 eq. for MOLLY. The results indicate that enteric CH4 estimates and emission trends in Manitoba were influenced by the type of model and beef cattle population. As such, it is necessary to use appropriate models for reliable estimates for enteric CH4 inventory. A more robust approach may be to integrate different models by using mechanistic models to estimate regional Ym values, which may then be used as input for the IPCC Tier 2 model.


Sign in / Sign up

Export Citation Format

Share Document