scholarly journals Methane efflux from an American bison herd

2020 ◽  
Author(s):  
Paul C. Stoy ◽  
Adam A. Cook ◽  
John E. Dore ◽  
William Kleindl ◽  
E. N. Jack Brookshire ◽  
...  

Abstract. American bison (Bison bison L.) have recovered from the brink of extinction over the past century. Bison reintroduction creates multiple environmental benefits, but their impacts on greenhouse gas emissions are poorly understood. Bison are thought to have produced some 2 Tg year−1 of the estimated 9–15 Tg year−1 of pre-industrial enteric methane emissions, but few contemporary measurements have been made due to their mobile grazing habits and safety issues associated with direct measurements. Here, we measure methane and carbon dioxide fluxes from a bison herd on an enclosed pasture during daytime periods in winter using eddy covariance. Methane emissions from the study area were negligible in the absence of bison (mean ± standard deviation = 0.0024 ± 0.042 μmol m−2 s−1) and were significantly greater than zero, 0.048 ± 0.082 μmol m−2 s−1 with a positively skewed distribution, when bison were present. We coupled an eddy covariance flux footprint analysis with bison location estimates from automated camera images to calculate a mean (median) methane flux of 38 μmol s−1 (22 μmol s−1) per animal, or 52 ± 14 g CH4 day−1 (31 g CH4 day−1), less than half of measured emission rates for range cattle. Emission estimates are subject to spatial uncertainty in bison location measurements and the flux footprint, but from our measurements there is no evidence that bison methane emissions exceed those from cattle. We caution however that our measurements were made during winter and that evening measurements of bison distributions were not possible using our approach. Annual measurements are ultimately necessary to determine the greenhouse gas burden of bison grazing systems. Eddy covariance is a promising technique for measuring ruminant methane emissions in conventional and alternate grazing systems and can be used to compare them going forward.

2021 ◽  
Vol 18 (3) ◽  
pp. 961-975
Author(s):  
Paul C. Stoy ◽  
Adam A. Cook ◽  
John E. Dore ◽  
Natascha Kljun ◽  
William Kleindl ◽  
...  

Abstract. American bison (Bison bison L.) have recovered from the brink of extinction over the past century. Bison reintroduction creates multiple environmental benefits, but impacts on greenhouse gas emissions are poorly understood. Bison are thought to have produced some 2 Tg yr−1 of the estimated 9–15 Tg yr−1 of pre-industrial enteric methane emissions, but few measurements have been made due to their mobile grazing habits and safety issues associated with measuring non-domesticated animals. Here, we measure methane and carbon dioxide fluxes from a bison herd on an enclosed pasture during daytime periods in winter using eddy covariance. Methane emissions from the study area were negligible in the absence of bison (mean ± standard deviation = −0.0009 ± 0.008 µmol m−2 s−1) and were significantly greater than zero, 0.048 ± 0.082 µmol m−2 s−1, with a positively skewed distribution, when bison were present. We coupled bison location estimates from automated camera images with two independent flux footprint models to calculate a mean per-animal methane efflux of 58.5 µmol s−1 per bison, similar to eddy covariance measurements of methane efflux from a cattle feedlot during winter. When we sum the observations over time with conservative uncertainty estimates we arrive at 81 g CH4 per bison d−1 with 95 % confidence intervals between 54 and 109 g CH4 per bison d−1. Uncertainty was dominated by bison location estimates (46 % of the total uncertainty), then the flux footprint model (33 %) and the eddy covariance measurements (21 %), suggesting that making higher-resolution animal location estimates is a logical starting point for decreasing total uncertainty. Annual measurements are ultimately necessary to determine the full greenhouse gas burden of bison grazing systems. Our observations highlight the need to compare greenhouse gas emissions from different ruminant grazing systems and demonstrate the potential for using eddy covariance to measure methane efflux from non-domesticated animals.


2007 ◽  
Vol 2007 ◽  
pp. 46-46 ◽  
Author(s):  
C. Martin ◽  
H. Dubbroeucq ◽  
D. Micol ◽  
J. Agabriel ◽  
M. Doreau

Methane (CH4) is a greenhouse gas of which the release into the atmosphere is directly linked with animal agriculture, particularly ruminant production. CH4 emissions from ruminant also represent a loss in productive energy for the animal. Development of effective strategies to mitigate these methane emissions will have not only environmental benefits for the planet but also nutritional benefits for the animal. It has been shown that concentrate-rich diets result in a decrease in methanogenesis per unit of animal product (milk, meat). However, some of these diets may have adverse effects on the efficiency of production, e.g. due to risk of acidosis. Our study focused on measuring methane emissions on young bulls fed three contrasting finishing diets characteristics of three intensive levels of production in France.


2011 ◽  
Vol 8 (4) ◽  
pp. 6519-6554 ◽  
Author(s):  
C. S. Sturtevant ◽  
W. C. Oechel ◽  
D. Zona ◽  
C. E. Emerson

Abstract. Two shortfalls in estimating current and future seasonal budgets of methane efflux in Arctic regions are the paucity of non-summer measurements and an incomplete understanding of the sensitivity of methane emissions to changes in tundra moisture. A recent study in one Arctic region highlighted the former by observing a previously unknown large methane pulse during the onset of autumn soil freeze. This study addresses these research gaps by presenting an analysis of eddy covariance measurements of methane efflux and supporting environmental variables during the autumn season of 2009 and associated soil freeze-in period at our large-scale water manipulation site near Barrow, Alaska (the Biocomplexity Experiment). We found that methane emissions during the autumn were closely tied to liquid soil moisture in the top 30 cm of soil. Declines in soil moisture between manipulated wet, intermediate, and dry conditions as well as through time during the soil freeze-in period led to corresponding declines in methane efflux. During the period of soil freeze-in (from 23 September to 28 October), we estimate that our wet section emitted 623 mg CH4 m−2 while the dry section emitted only 253 mg CH4 m−2, the average of which represents 18 % of net emissions from the typically measured growing season. We did not find evidence for a pulse in methane emissions during soil freeze at this site. Results from this study imply that future changes in tundra moisture will have a large effect on methane emissions in this region, and changes which span the saturation point are likely to have the largest effect. We speculate that changes in autumn soil moisture are also likely to affect winter emissions via the insulative effects of ice on winter soil temperature and liquid soil moisture availability after bulk soil freeze. Further research should expand the use of eddy covariance methane flux measurements to investigate ecosystem-level effects of tundra moisture on autumn and winter methane emissions in this and other Arctic regions.


2011 ◽  
Vol 8 (9) ◽  
pp. 2815-2831 ◽  
Author(s):  
W. Eugster ◽  
T. DelSontro ◽  
S. Sobek

Abstract. Greenhouse gas budgets quantified via land-surface eddy covariance (EC) flux sites differ significantly from those obtained via inverse modeling. A possible reason for the discrepancy between methods may be our gap in quantitative knowledge of methane (CH4) fluxes. In this study we carried out EC flux measurements during two intensive campaigns in summer 2008 to quantify methane flux from a hydropower reservoir and link its temporal variability to environmental driving forces: water temperature and pressure changes (atmospheric and due to changes in lake level). Methane fluxes were extremely high and highly variable, but consistently showed gas efflux from the lake when the wind was approaching the EC sensors across the open water, as confirmed by floating chamber flux measurements. The average flux was 3.8 ± 0.4 μg C m−2 s−1 (mean ± SE) with a median of 1.4 μg C m−2 s−1, which is quite high even compared to tropical reservoirs. Floating chamber fluxes from four selected days confirmed such high fluxes with 7.4 ± 1.3 μg C m−2 s−1. Fluxes increased exponentially with increasing temperatures, but were decreasing exponentially with increasing atmospheric and/or lake level pressure. A multiple regression using lake surface temperatures (0.1 m depth), temperature at depth (10 m deep in front of the dam), atmospheric pressure, and lake level was able to explain 35.4% of the overall variance. This best fit included each variable averaged over a 9-h moving window, plus the respective short-term residuals thereof. We estimate that an annual average of 3% of the particulate organic matter (POM) input via the river is sufficient to sustain these large CH4 fluxes. To compensate the global warming potential associated with the CH4 effluxes from this hydropower reservoir a 1.3 to 3.7 times larger terrestrial area with net carbon dioxide uptake is needed if a European-scale compilation of grasslands, croplands and forests is taken as reference. This indicates the potential relevance of temperate reservoirs and lakes in local and regional greenhouse gas budgets.


2021 ◽  
Author(s):  
Koffi Dodji Noumonvi ◽  
Joshua L. Ratcliffe ◽  
Mats Öquist ◽  
Mats B. Nilsson ◽  
Matthias Peichl

<p>Northern peatlands cover a small fraction of the earth’s land surface, and yet they are one of the most important natural sources of atmospheric methane. With climate change causing rising temperatures, changes in water balance and increased growing season length, peatland contribution to atmospheric methane concentration is likely to increase, justifying the increased attention given to northern peatland methane dynamics. Northern peatlands often occur as heterogeneous complexes characterized by hydromorphologically distinct features from < 1 m² to tens of km², with differing physical, hydrological and chemical properties. The more commonly understood small-scale variation between hummocks, lawns and hollows has been well explored using chamber measurements. Single tower eddy covariance measurements, with a typical 95% flux footprint of < 0.5 km², have been used to assess the ecosystem scale methane exchange. However, how representative single tower flux measurements are of an entire mire complex is not well understood. To address this knowledge gap, the present study takes advantage of a network of four eddy covariance towers located less than 3 km apart at four mires within a typical boreal mire complex in northern Sweden. The variation of methane fluxes and its drivers between the four sites will be explored at different temporal scales, i.e. half-hourly, daily and at a growing-season scale.</p>


Flux gradient, eddy covariance and relaxed eddy accumulation methods were applied to measure CH 4 and N 2 O emissions from peatlands and arable land respectively. Measurements of N 2 O emission by eddy covariance using tunable diode laser spectroscopy provided fluxes ranging from 2 to 60 µ mol N 2 O m -2 h -1 with a mean value of 22 µ mol N 2 O m -2 h -1 from 320 h of continuous measurements. Fluxes of CH 4 measured above peatland in Caithness (U.K.) during May and June 1993 by eddy covariance and relaxed eddy accumulation methods were in the range 70 to 120 µ mol CH 4 m -2 h -1 with means of 14.7 µ mol CH 4 m -2 h -1 and 22.7 µ mol CH 4 m -2 h -1 respectively. Emissions of CH 4 from peatland changed with water table depth and soil temperature; increasing from 25 |Amol CH 4 m -2 h -1 at 5% pool area to 50 p.mol CH 4 m -2 h -1 with 30% within the flux footprint occupied by pools. A temperature response of 4.9 (xmol CH 4 m -2 h -1 °C -1 in the range 6-12 °C was also observed. The close similarity in average CH 4 emission fluxes reported for wetlands in Caithness, Hudson Bay and Alaska in the range 11 to 40 jamol CH 4 m -2 h -1 suggests that earlier estimates of CH 4 emission from high latitude wetlands were too large or that the area of high latitudes contributing to CH 4 emission has been seriously underestimated.


2018 ◽  
Vol 32 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Robert Czubaszek ◽  
Agnieszka Wysocka-Czubaszek

AbstractDigestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2and CH4fluxes, 79.62 and 3.049 µmol s−1m−2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.


2013 ◽  
Vol 10 (11) ◽  
pp. 7739-7758 ◽  
Author(s):  
A. Meyer ◽  
L. Tarvainen ◽  
A. Nousratpour ◽  
R. G. Björk ◽  
M. Ernfors ◽  
...  

Abstract. Afforestation has been proposed as a strategy to mitigate the often high greenhouse gas (GHG) emissions from agricultural soils with high organic matter content. However, the carbon dioxide (CO2) and nitrous oxide (N2O) fluxes after afforestation can be considerable, depending predominantly on site drainage and nutrient availability. Studies on the full GHG budget of afforested organic soils are scarce and hampered by the uncertainties associated with methodology. In this study we determined the GHG budget of a spruce-dominated forest on a drained organic soil with an agricultural history. Two different approaches for determining the net ecosystem CO2 exchange (NEE) were applied, for the year 2008, one direct (eddy covariance) and the other indirect (analyzing the different components of the GHG budget), so that uncertainties in each method could be evaluated. The annual tree production in 2008 was 8.3 ± 3.9 t C ha−1 yr−1 due to the high levels of soil nutrients, the favorable climatic conditions and the fact that the forest was probably in its phase of maximum C assimilation or shortly past it. The N2O fluxes were determined by the closed-chamber technique and amounted to 0.9 ± 0.8 t Ceq ha−1 yr−1. According to the direct measurements from the eddy covariance technique, the site acts as a minor GHG sink of −1.2 ± 0.8 t Ceq ha−1 yr−1. This contrasts with the NEE estimate derived from the indirect approach which suggests that the site is a net GHG emitter of 0.6 ± 4.5 t Ceq ha−1 yr−1. Irrespective of the approach applied, the soil CO2 effluxes counter large amounts of the C sequestration by trees. Due to accumulated uncertainties involved in the indirect approach, the direct approach is considered the more reliable tool. As the rate of C sequestration will likely decrease with forest age, the site will probably become a GHG source once again as the trees do not compensate for the soil C and N losses. Also forests in younger age stages have been shown to have lower C assimilation rates; thus, the overall GHG sink potential of this afforested nutrient-rich organic soil is probably limited to the short period of maximum C assimilation.


2013 ◽  
Vol 10 (3) ◽  
pp. 5107-5148 ◽  
Author(s):  
A. Meyer ◽  
L. Tarvainen ◽  
A. Nousratpour ◽  
R. G. Björk ◽  
M. Ernfors ◽  
...  

Abstract. Afforestation has been proposed as a strategy to mitigate the often high greenhouse gas (GHG) emissions from agricultural soils with a high organic matter content. However, the carbon dioxide (CO2) and nitrous oxide (N2O) fluxes after afforestation can be considerable, depending predominantly on site drainage and nutrient availability. Studies on the full GHG budget of afforested organic soils are scarce and hampered by the uncertainties associated with methodology. In this study we determined the GHG budget of a spruce-dominated forest on a drained organic soil with an agricultural history. Two different approaches for determining the net ecosystem CO2 exchange (NEE) were applied: for the year 2008, direct (eddy covariance) and an indirect (analyzing the different components of the GHG budget), so that uncertainties in each method could be evaluated. The annual tree production in 2008 was 8.2 (± 1.7)t C ha–1yr–1 due to the high levels of soil nutrients, the favorable climatic conditions and the fact that the forest was in its optimum growth phase. N2O fluxes were determined by the closed chamber technique and amounted to 3.3 (± 2.4) t CO2eq ha–1 yr–1. According to the direct measurements from the eddy covariance technique, the site acts as a minor GHG sink of −4.1 (± 2.6) t CO2eq ha–1 yr–1. This contrasts with the NEE estimate derived from the indirect approach which suggests that the site is a net GHG emitter of 3.3 (± 10.1)t CO2eq ha–1 yr–1. Irrespective of the approach applied, the soil CO2 effluxes counter large amounts of the C sequestration by trees. Due to major uncertainties involved in the indirect approach, the direct approach is considered the more reliable tool. As the site was in its optimum growth stage, i.e. the rate of C sequestration was at its maximum and will decrease with forest age, it will probably become a GHG source once again as the trees mature. Since forests in their younger stages are usually GHG sources or have no effect on GHGs, the overall sink potential of this afforested nutrient-rich organic soil is probably limited to only a short period.


Sign in / Sign up

Export Citation Format

Share Document