Design of Low Power Integrated CMOS Potentiometric Biosensor for Direct Electronic Detection of DNA Hybridization

2014 ◽  
Vol 67 (1) ◽  
Author(s):  
Wong How Hwan ◽  
Vinny Lam Siu Fan ◽  
Yusmeeraz Yusof

The purpose of this research is to design a low power integrated complementary metal oxide semiconductor (CMOS) detection circuit for charge-modulated field-effect transistor (CMFET) and it is used for the detection of deoxyribonucleic acid (DNA) hybridization. With the available CMOS technology, it allows the realization of complete systems which integrate the sensing units and transducing elements in the same device. Point-of-care (POC) testing device is a device that allows anyone to operate anywhere and obtain immediate results. One of the important features of POC device is low power consumption because it is normally battery-operated. The power consumption of the proposed integrated CMOS detection circuit requires only 14.87 mW. The detection circuit will amplify the electrical signal that comes from the CMFET to a specified level in order to improve the recording characteristics of the biosensor. Self-cascode topology was used in the drain follower circuit in order to reduce the channel length modulation effect. The proposed detection circuit was designed with 0.18µm Silterra CMOS fabrication process and simulated under Cadence Simulation Tool. 

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 243 ◽  
Author(s):  
Padmanabhan Balasubramanian ◽  
Douglas Maskell ◽  
Nikos Mastorakis

Adder is an important datapath unit of a general-purpose microprocessor or a digital signal processor. In the nanoelectronics era, the design of an adder that is modular and which can withstand variations in process, voltage and temperature are of interest. In this context, this article presents a new robust early output asynchronous block carry lookahead adder (BCLA) with redundant carry logic (BCLARC) that has a reduced power-cycle time product (PCTP) and is a low power design. The proposed asynchronous BCLARC is implemented using the delay-insensitive dual-rail code and adheres to the 4-phase return-to-zero (RTZ) and the 4-phase return-to-one (RTO) handshaking. Many existing asynchronous ripple-carry adders (RCAs), carry lookahead adders (CLAs) and carry select adders (CSLAs) were implemented alongside to perform a comparison based on a 32/28 nm complementary metal-oxide-semiconductor (CMOS) technology. The 32-bit addition was considered for an example. For implementation using the delay-insensitive dual-rail code and subject to the 4-phase RTZ handshaking (4-phase RTO handshaking), the proposed BCLARC which is robust and of early output type achieves: (i) 8% (5.7%) reduction in PCTP compared to the optimum RCA, (ii) 14.9% (15.5%) reduction in PCTP compared to the optimum BCLARC, and (iii) 26% (25.5%) reduction in PCTP compared to the optimum CSLA.


Author(s):  
Sunil Kumar ◽  
Balwinder Raj

In Complementary Metal-Oxide-Semiconductor (CMOS) technology, scaling has been a main key for continuous progress in silicon-based semiconductor industry over the past four decades. However, as the technology advancement on nanometer scale regime for the purpose of building ultra-high density integrated electronic computers and extending performance, CMOS devices are facing fundamental problems such as increased leakage currents, large process parameter variations, short channel effects, increase in manufacturing cost, etc. The new technology must be energy efficient, dense, and enable more device function per unit area and time. There are many novel nanoscale semiconductor devices, this book chapter introduces and summarizes progress in the development of the Tunnel Field-Effect Transistors (TFETs) for low power design. Tunnel FETs are interesting devices for ultra-low power applications due to their steep sub-threshold swing (SS) and very low OFF-current. Tunnel FETs avoid the limit 60mv/decade by using quantum-mechanical Band-to-Band Tunneling (BTBT).


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 783
Author(s):  
Jin-Fa Lin ◽  
Zheng-Jie Hong ◽  
Chang-Ming Tsai ◽  
Bo-Cheng Wu ◽  
Shao-Wei Yu

In this paper, a compact and low-power true single-phase flip-flop (FF) design with fully static operations is presented. The design is developed by using various circuit-reduction schemes and features a hybrid logic style employing both pass transistor logic (PTL) and static complementary metal-oxide semiconductor (CMOS) logic to reduce circuit complexity. These circuit optimization measures pay off in various aspects, including smaller clock-to-Q (CQ) delay, lower average power, lower leakage power, and smaller layout area; and the transistor-count is only 17. Fabricated in TSMC 180 nm CMOS technology, it reduces by over 29% the chip area compared to the conventional transmission gate FF (TGFF). To further show digital circuit/system level advantages, a multi-mode shift register has been realized. Experimental measurement results at 1.8 V/4 MHz show that, compared with the TGFF design, the proposed design saves 64.7% of power consumption while reducing chip area by 26.2%.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950165 ◽  
Author(s):  
Sandeep Garg ◽  
Tarun K. Gupta

In this paper, a fin field-effect transistor (FinFET)-based domino technique dynamic node-driven feedback transistor domino logic (DNDFTDL) is designed for low-power, high-speed and improved noise performance. In the proposed domino technique, the concept of current division is explored below the evaluation network for enhancement of performance parameters. Simulations are carried out for 32-nm complementary metal–oxide–semiconductor (CMOS) and FinFET node using HSPICE for 2-, 4-, 8- and 16-input OR gates with a DC supply voltage of 0.9[Formula: see text]V. Proposed technique shows a maximum power reduction of 73.93% in FinFET short-gate (SG) mode as compared to conditional stacked keeper domino logic (CSKDL) technique and a maximum power reduction of 72.12% as compared to modified high-speed clocked delay domino logic (M-HSCD) technique in FinFET low-power (LP) mode. The proposed technique shows a maximum delay reduction of 35.52% as compared to voltage comparison domino (VCD) technique in SG mode and a reduction of 25.01% as compared to current mirror footed domino logic (CMFD) technique in LP mode. The unity noise gain (UNG) of the proposed circuit is 1.72–[Formula: see text] higher compared to different existing techniques in FinFET SG mode and is 1.42–[Formula: see text] higher in FinFET LP mode. The Figure of Merit (FOM) of the proposed circuit is up to [Formula: see text] higher as compared to existing domino logic techniques because of lower values of power, delay and area and higher values of UNG of the proposed circuit. In addition, the proposed technique shows a maximum power reduction of up to 68.64% in FinFET technology as compared to its counterpart in CMOS technology.


2011 ◽  
Vol 3 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Michael Kraemer ◽  
Daniela Dragomirescu ◽  
Robert Plana

The research on the design of receiver front-ends for very high data-rate communication in the 60 GHz band in nanoscale Complementary Metal Oxide Semiconductor (CMOS) technologies is going on for some time now. Although a multitude of 60 GHz front-ends have been published in recent years, they are not consequently optimized for low power consumption. Thus, these front-ends dissipate too much power for battery-powered applications like handheld devices, mobile phones, and wireless sensor networks. This article describes the design of a direct conversion receiver front-end that addresses the issue of power consumption, while at the same time permitting low cost (due to area minimization by the use of spiral inductors). It is implemented in a 65 nm CMOS technology. The realized front-end achieves a record power consumption of only 43 mW including low-noise amplifier (LNA), mixer, a voltage controlled oscillator (VCO), a local oscillator (LO) buffer, and a baseband buffer (without this latter buffer the power consumption is even lower, only 29 mW). Its pad-limited size is 0.55 × 1 mm2. At the same time, the front-end achieves state-of-the-art performance with respect to its other properties: Its maximum measured power conversion gain is 30 dB, the RF and IF bandwidths are 56.5–61.5 and 0–1.5 GHz, respectively, its measured minimum noise figure is 9.2 dB, and its measured IP−1 dB is −36 dBm.


Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 151
Author(s):  
Zhenyi Gao ◽  
Bin Zhou ◽  
Chunge Ju ◽  
Qi Wei ◽  
Xinxi Zhang ◽  
...  

Nonlinear errors of sensor output signals are common in the field of inertial measurement and can be compensated with statistical models or machine learning models. Machine learning solutions with large computational complexity are generally offline or implemented on additional hardware platforms, which are difficult to meet the high integration requirements of microelectromechanical system inertial sensors. This paper explored the feasibility of an online compensation scheme based on neural networks. In the designed solution, a simplified small-scale network is used for modeling, and the peak-to-peak value and standard deviation of the error after compensation are reduced to 17.00% and 16.95%, respectively. Additionally, a compensation circuit is designed based on the simplified modeling scheme. The results show that the circuit compensation effect is consistent with the results of the algorithm experiment. Under SMIC 180 nm complementary metal-oxide semiconductor (CMOS) technology, the circuit has a maximum operating frequency of 96 MHz and an area of 0.19 mm2. When the sampling signal frequency is 800 kHz, the power consumption is only 1.12 mW. This circuit can be used as a component of the measurement and control system on chip (SoC), which meets real-time application scenarios with low power consumption requirements.


Compressors are the fundamental building blocks to construct Data Processing arithmetic units. A novel 3-2 Compressor is presented in this paper which is designed by Mixed logic design style. In addition to small size transistors and reduced transistor activity compared to conventional CMOS (Complementary Metal Oxide Semiconductor) gates, it provides the priority between the High logic and Low logic for the computation of the output. Various logic topologies are used to design the 3-2 compressor like High-Skew(Hi-Skew), Low-Skew(Li-Skew), TGL (Transmission Gate Logic) and DVL (Dual value Logic). This new approach gives the better operating speed, low power consumption compared to conventional logic design by reducing the transistors activity, improving the driving capability and reduced input capacitance with skew gates. Especially the Mixed logic style-3 provides 92.39% average power consumption and Propagation Delay of 99.59% at 0.8v. The H-SPICE simulation tool is used for construction and evaluation of compressor logic at different voltages. 32nm model file is used for MOS transistors


2019 ◽  
Vol 9 (3) ◽  
pp. 21 ◽  
Author(s):  
Satheesh Kumar S ◽  
Kumaravel S

Due to the reduction in technology scaling, gate capacitance and charge storage in sensitive nodes are rapidly decreasing, making Complementary Metal Oxide Semiconductor (CMOS) circuits more sensitive to soft errors caused by radiation. In this paper, a low-power and high-speed single event upset radiation hardened latch is proposed. The proposed latch can withstand single event upsets completely when the high energy particle hit on any one of its intermediate nodes. The proposed latch structure comprises of four CMOS feedback schemes and a Muller C-element with clock gating technique. For the sake of comparison, the proposed and the existing latches in the literature are implemented in 45nm CMOS technology. From the post layout simulation results, it may be noted that the proposed latch achieves 8% low power consumption, 95% less delay, and a 94% reduction in power-delay-product compared to the existing single event upset resilient and single event tolerant latches. Monte Carlo simulations show that the proposed latch is less sensitive to process, voltage, and temperature variations in comparison with the existing hardened latches in the literature.


2017 ◽  
Vol 27 (03) ◽  
pp. 1850047
Author(s):  
Xin Zhang ◽  
Chunhua Wang ◽  
Yichuang Sun ◽  
Haijun Peng

This paper presents a high linearity and low power Low-Noise Amplifier (LNA) for Ultra-Wideband (UWB) receivers based on CHRT 0.18[Formula: see text][Formula: see text]m Complementary Metal-Oxide-Semiconductor (CMOS) technology. In this work, the folded topology is adopted in order to reduce the supply voltage and power consumption. Moreover, a band-pass LC filter is embedded in the folded-cascode circuit to extend bandwidth. The transconductance nonlinearity has a great impact on the whole LNA linearity performance under a low supply voltage. A post-distortion (PD) technique employing an auxiliary transistor is applied in the transconductance stage to improve the linearity. The post-layout simulation results indicate that the proposed LNA achieves a maximum power gain of 12.8[Formula: see text]dB. The input and output reflection coefficients both are lower than [Formula: see text][Formula: see text]dB over 2.5–11.5[Formula: see text]GHz. The input third-order intercept point (IIP3) is 5.6[Formula: see text]dBm at 8[Formula: see text]GHz and the noise figure (NF) is lower than 4.0[Formula: see text]dB. The LNA consumes 5.4[Formula: see text]mW power under a 1[Formula: see text]V supply voltage.


Sign in / Sign up

Export Citation Format

Share Document