An ultra-wideband, polarization insensitive metamaterial absorber based on multiple resistive film layers with wide-incident-angle stability

Author(s):  
Guangsheng Deng ◽  
Kun Lv ◽  
Hanxiao Sun ◽  
Yuan Hong ◽  
Xiaoying Zhang ◽  
...  

Abstract In this work, we propose a broadband, polarization-insensitive and wide incident angle stable metamaterial absorber (MA) based on the resistive film. The absorber consists of a three-layer structure with each layer of dielectric substrate printed with different shapes of resistive film. The multilayer structure not only extends the absorption bandwidth but also maintains high absorption under large wave incident angles. Numerical simulation shows that the absorptivity of a normal incident wave is above 90% in the frequency range 2.34–18.95 GHz, corresponding to a relative absorption bandwidth of 156%. Moreover, the whole MA structure has a total thickness of 11.3 mm, corresponding to 0.09 λ0 at its lowest absorption frequency. Due to the high symmetry of the structure, the absorber has good polarization insensitivity. In addition, for both transverse electric and transverse magnetic incidence, the proposed absorber achieves an absorptivity of more than 80% at incident angles of up to 45° and thus has good stability for wide incident angles. The absorption principle of the absorber is analyzed by the surface current and power loss density distribution. Parameter analysis is also performed for bandwidth optimization. Due to its advantages of wideband absorption with high efficiency, the proposed absorber has the potential to be applied to the energy-harvesting and electromagnetic stealth fields.

2018 ◽  
Vol 8 (9) ◽  
pp. 1679
Author(s):  
Jie Hu ◽  
Tingting Lang ◽  
Changyu Shen ◽  
Liyang Shao

In this paper, we propose a combined metasurface consisting of an aluminum substrate and an array of TiO2 blocks to achieve a wideband terahertz absorber. We incorporated several similar dielectric blocks with different side length into each unit cell. Each dielectric block could cause magnetic-resonance-inducing absorption effect with different peak wavelengths. Thus, our combined metasurface could achieve wider absorption frequency band than the traditional design when these dielectric blocks were properly designed. The absorption bandwidth could be widened nearly 2.5 times and 5 times compared to a single block case when there were four and nine blocks, respectively, andcouldbe further improved by increasing the number of combinations in structures (variable parameters included number, spacing, dimensions etc.). For both TE00 (the electric fields of the light polarized along the y-axis) and TM00 (the electric fields of the light polarized along the x-axis) polarization states, the absorption bandwidth could be widened effectively; even when the incident angle was 45°, the absorption rate could still reach about 75%. This structure is simple and easy to fabricate, and this design concept can also be used in various other application fields.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2590 ◽  
Author(s):  
Huafeng Liu ◽  
Kai Luo ◽  
Shihao Tang ◽  
Danhua Peng ◽  
Fangjing Hu ◽  
...  

Metamaterial-based absorbers have been extensively investigated in the terahertz (THz) range with ever increasing performances. In this paper, we propose an all-dielectric THz absorber based on doped silicon. The unit cell consists of a silicon cross resonator with an internal cross-shaped air cavity. Numerical results suggest that the proposed absorber can operate from THz to far-infrared regimes, having an average power absorption of ∼95% between 0.6 and 10 THz. Experimental results using THz time-domain spectroscopy show a good agreement with simulations. The underlying mechanisms for broadband absorption are attributed to the combined effects of multiple cavities modes formed by silicon resonators and bulk absorption in the doped silicon substrate, as confirmed by simulated field patterns and calculated diffraction efficiency. This ultra-wideband absorption is polarization insensitive and can operate across a wide range of the incident angle. The proposed absorber can be readily integrated into silicon-based photonic platforms and used for sensing, imaging, energy harvesting and wireless communications applications in the THz/IR range.


2021 ◽  
Vol 8 ◽  
Author(s):  
Liansheng Wang ◽  
Dongyan Xia ◽  
Quanhong Fu ◽  
Xueyong Ding ◽  
Yuan Wang

In this paper, we report a switchable ultra-wideband metamaterial absorber with polarization-insensitivity and wide-incident angle at THz band which is composed of VO2 disk, polyimide dielectric substrate, and gold ground plane. The results show that the absorption is greater than 90% from 3.5–8 THz for a temperature of 300 K and this absorption band disappears when the temperature rises to 350 K. The absorption property of our proposed metamaterial absorber is insensitive to polarization states and angles and it can withhold high absorption of more than 80% for wide-incident angles, up to 60° for TE mode and TM mode. The wideband absorption mechanism is elucidated using an effective medium and surface current analysis.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 129525-129541 ◽  
Author(s):  
Sultan Mahmud ◽  
Sikder Sunbeam Islam ◽  
Ali F. Almutairi ◽  
Mohammad Tariqul Islam

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4883
Author(s):  
Shicheng Fan ◽  
Yaoliang Song

In this paper, an ultra-wideband flexible absorber is proposed. Based on a summary of the absorption mechanism, using lossless air to replace the heavy lossy dielectric layer will not substantially impact the absorption. The dielectric layer is only a thin layer of polyimide. The proposed absorber is a sandwich structure. The surface is a layer of copper metal ring and wire, and it is loaded with chip resistors to expand the absorber bandwidth. Simulated results show that the bandwidth of the proposed absorber, with an absorptivity of more than 90%, is 2.55–10.07 GHz, with a relative bandwidth over 119.2%. When the electromagnetic wave has a wide incident angle, the absorber still maintains a high absorption. This absorber has been fabricated by FPC (flexible printed circuit) technology. The proposed absorber was attached to the cylinder and measured. The measurement results are roughly the same as the simulation results. The fabricated absorber is easy to carry and flexible, such that it can easily be conformed to irregular objects. The proposed absorber is polarization-insensitive, low profile, thin, and portable, so it is easier to apply in a variety of practical fields.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2560 ◽  
Author(s):  
Asraful Alam ◽  
Sikder Sunbeam Islam ◽  
Md. Hobaibul Islam ◽  
Ali F. Almutairi ◽  
Mohammad Tariqul Islam

This paper presents an ultra-wideband metamaterial absorber for solar harvesting in the infrared regime (220–360 THz) of the solar spectrum. The proposed absorber consists of square-shaped copper patches of different sizes imposed on a GaAs (Gallium arsenide) substrate. The design and simulation of the unit cell are performed with finite integration technique (FIT)-based simulation software. Scattering parameters are retrieved during the simulation process. The constructed design offers absorbance above 90% within a 37.89% relative bandwidth and 99.99% absorption over a vast portion of the investigated frequency range. An equivalent circuit model is presented to endorse the validity of the proposed structure. The calculated result strongly agrees with the simulated result. Symmetrical construction of the proposed unit cell reports an angular insensitivity up to a 35° oblique incidence. Post-processed simulation data confirm that the design is polarization-insensitive.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Guangsheng Deng ◽  
Kun Lv ◽  
Hanxiao Sun ◽  
Jun Yang ◽  
Zhiping Yin ◽  
...  

AbstractAn ultrathin and flexible metamaterial absorber (MA) with triple absorption peaks is presented in this paper. The proposed absorber has been designed in such a way that three absorption peaks are located at 8.5, 13.5, and 17 GHz (X and Ku bands) with absorption of 99.9%, 99.5%, and 99.9%, respectively. The proposed structure is only 0.4 mm thick, which is approximately 1/88, 1/55, and 1/44 for the respective free space wavelengths of absorption frequency in various bands. The MA is also insensitive due to its symmetric geometry. In addition, the proposed structure exhibits minimum 86% absorption (TE incidence) within 60° angle of incidence. For TM incidence, the proposed absorber exhibits more than 99% absorptivity up to 60° incidence. Surface current and electric field distributions were investigated to analyze the mechanism governing absorption. Parameter analyses were performed for absorption optimization. Moreover, the performance of the MA was experimentally demonstrated in free space on a sample under test with 20 × 30 unit cells fabricated on a flexible dielectric. Under normal incidence, the fabricated MA exhibits near perfect absorption at each absorption peak for all polarization angles, and the experimental results were found to be consistent with simulation results. Due to its advantages of high-efficiency absorption over a broad range of incidence angles, the proposed absorber can be used in energy harvesting and electromagnetic shielding.


Author(s):  
Yan Shi 1 ◽  
Jie Yang 1 ◽  
Hua Shen 1 ◽  
Zhankui Meng 1 ◽  
Tong Hao 1

In this paper, a metamaterial-based ferromagnetic absorber has been designed at microwave frequencies. The proposed absorber is composed of a periodic array of stacked circular ferromagnetic patches fabricated on the FR4 substrate. With the ferromagnetic property, the single-layer patch array generates a good resonant absorption mode. By stacking multiple ferromagnetic patches, the designed absorber with the absorption above 90% has a wide absorption bandwidth from 10 to 21 GHz. Due to the symmetric structure, the proposed absorber is polarization insensitive. At oblique incident with the incident angle of 45o, the good absorption more than 80% can be achieved in the whole operation band.


2021 ◽  
Author(s):  
Huan Liu ◽  
Rui Wang ◽  
Junyao Wang ◽  
Tianhong Lang ◽  
Bowen Cui

Abstract In this paper, an ultrathin dual-band metamaterial absorber (MMA) is designed. Its top layer consists of two nested split-ring resonators. The calculation result demonstrates that there are two distinct absorption peaks, which are 9.258GHz and 21.336GHz, with absorption rate of 99.78% and 96.91%. It also show polarization-insensitive for normal incident and its thickness is only 1.96% of the wavelength of its lowest absorption frequency. Moreover, we explore the MMA’s absorption mechanism and analyze the influence of main structural parameters on the MMA’s absorption characteristics. The proposed MMA has simple structure and high absorption, it can be applied in electromagnetic stealth, bolometers, sensor and other fields.


Sign in / Sign up

Export Citation Format

Share Document