Newborns physiological differences in low- and high-altitude settings of Ecuador

Author(s):  
Mayra Asas-Jinde ◽  
Fabricio González-Andrade

Abstract Newborns show physiological differences in low- and high-altitude settings of Ecuador; those differences are especially relevant because most important cities in Ecuador are located at high altitude, above 2500 m. This study is an epidemiological, observational, and cross-sectional research performed at San Francisco Hospital in Quito (at 2850 m) and General Hospital in Manta (at 6 m) in the Manabí province. We studied 204 full-term newborns, healthy without any prenatal comorbidities, singleton pregnancy, mestizos, and born of healthy parents born. We found significant differences between the values of red blood cells (RBC), leucocytes, hematocrit, and hemoglobin. There was a difference of 27% more in RBC, 3% at hematocrit, and 0.4 g at hemoglobin in the high-altitude cohort. The leucocyte difference is 1270 cells/µl, which means a difference of 6%. At high-altitude settings, the mean pH was lower than normal values and pO2, pCO2, and HCO3. High-altitude newborns showed RBC of > 4,500,000 cells/µl; leukocytes > 19,000; pO2 ≤ 72 mm Hg; hemoglobin > 17.50 g/dl; and hematocrit > 54%. Both cohorts showed physiological changes of transition to extrauterine life. We observed higher polycythemia, respiratory acidosis, and hypoxemia among high-altitude newborns. High-altitude setting intensifies the physiological changes in hematological and arterial blood gases parameters.

1992 ◽  
Vol 73 (4) ◽  
pp. 1671-1675 ◽  
Author(s):  
W. D. Reid ◽  
J. Noonan ◽  
F. Chung ◽  
C. Tesler-Mabe

Previous animal models of hypercapnic ventilatory failure are limited in that the resistive load has only been applied acutely and often in anesthetized animals. We therefore developed a chronic animal model of hypercapnic ventilatory failure by increasing airway resistance via tracheal banding over several days. To test the efficacy of this model, we compared arterial blood gases, pulmonary function, and internal area of the trachea 6 days after the banding or sham procedure in 20 hamsters. Six days later, banded animals had an increased airway resistance as indicated by a 66% reduction in internal cross-sectional area of the trachea and a 6.5-fold increase in pulmonary resistance compared with control hamsters. The increased airway resistance resulted in a severe respiratory acidosis and hypoxemia in the awake banded hamsters. Banded hamsters were also hyperinflated. This animal model will be useful for investigating the various mechanisms that contribute to hypercapnic ventilatory failure and interventions that may promote recovery.


2019 ◽  
Vol 15 (2) ◽  
pp. 79-89 ◽  
Author(s):  
Yamely Mendez ◽  
Francisco E. Ochoa-Martinez ◽  
Tatiana Ambrosii

Chronic obstructive lung disease is a common and preventable disease. One of its pathophysiological consequences is the presence of carbon dioxide retention due to hypoventilation and ventilation/perfusion mismatch, which in consequence will cause a decrease in the acid/base status of the patient. Whenever a patient develops an acute exacerbation, acute respiratory hypercapnic failure will appear and the necessity of a hospital ward is a must. However, current guidelines exist to better identify these patients and make an accurate diagnosis by using clinical skills and laboratory data such as arterial blood gases. Once the patient is identified, rapid treatment will help to diminish the hospital length and the avoidance of intensive care unit. On the other hand, if there is the existence of comorbidities such as cardiac failure, gastroesophageal reflux disease, pulmonary embolism or depression, it is likely that the patient will be admitted to the intensive care unit with the requirement of intubation and mechanical ventilation.


2015 ◽  
Vol 35 (5) ◽  
pp. 873-881 ◽  
Author(s):  
Christopher K Willie ◽  
David B MacLeod ◽  
Kurt J Smith ◽  
Nia C Lewis ◽  
Glen E Foster ◽  
...  

The effects of partial acclimatization to high altitude (HA; 5,050 m) on cerebral metabolism and cerebrovascular function have not been characterized. We hypothesized (1) increased cerebrovascular reactivity (CVR) at HA; and (2) that CO2 would affect cerebral metabolism more than hypoxia. PaO2 and PaCO2 were manipulated at sea level (SL) to simulate HA exposure, and at HA, SL blood gases were simulated; CVR was assessed at both altitudes. Arterial–jugular venous differences were measured to calculate cerebral metabolic rates and cerebral blood flow (CBF). We observed that (1) partial acclimatization yields a steeper CO2-H+ relation in both arterial and jugular venous blood; yet (2) CVR did not change, despite (3) mean arterial pressure (MAP)-CO2 reactivity being doubled at HA, thus indicating effective cerebral autoregulation. (4) At SL hypoxia increased CBF, and restoration of oxygen at HA reduced CBF, but neither had any effect on cerebral metabolism. Acclimatization resets the cerebrovasculature to chronic hypocapnia.


1989 ◽  
Vol 66 (6) ◽  
pp. 2895-2900 ◽  
Author(s):  
T. I. Musch ◽  
B. S. Warfel ◽  
R. L. Moore ◽  
D. R. Larach

We compared the effects of three different anesthetics (halothane, ketamine-xylazine, and diethyl ether) on arterial blood gases, acid-base status, and tissue glycogen concentrations in rats subjected to 20 min of rest or treadmill exercise (10% grade, 28 m/min). Results demonstrated that exercise produced significant increases in arterial lactate concentrations along with reductions in arterial Pco2 (PaCO2) and bicarbonate concentrations in all rats compared with resting values. Furthermore, exercise produced significant reductions in the glycogen concentrations in the liver and soleus and plantaris muscles, whereas the glycogen concentrations found in the diaphragm and white gastrocnemius muscles were similar to those found at rest. Rats that received halothane and ketamine-xylazine anesthesia demonstrated an increase in Paco2 and a respiratory acidosis compared with rats that received either anesthesia. These differences in arterial blood gases and acid-base status did not appear to have any effect on tissue glycogen concentrations, because the glycogen contents found in liver and different skeletal muscles were similar to one another cross all three anesthetic groups. These data suggest that even though halothane and ketamine-xylazine anesthesia will produce a significant amount of ventilatory depression in the rat, both anesthetics may be used in studies where changes in tissue glycogen concentrations are being measured and where adequate general anesthesia is required.


2020 ◽  
Author(s):  
Mostafa Mohammadi ◽  
Hesam Aldin Varpaei ◽  
Majid Amini

Abstract Background: In December 2019, a new pathogen, HCoV, or New Corona Virus 2019 (2019-nCoV), was recognized in Wuhan, China, causing a pandemic. COVID-19 has a wide range of clinical severity. Approximately 3.2% of patients within some periods of the disease require intubation and invasive ventilation. Methods: This study was descriptive-analytical and was conducted in the Imam Khomeini Hospital. Patients with Covid-19 who required endotracheal intubation were identified and their clinical signs and laboratory parameters were recorded. SPSS23 software was used for statistical analysis. Results: 120 patients with coronavirus with different conditions were evaluated. The mean age was 55±14. 30 patients had cardiovascular disease (hypertension) and 20 endocrine disease(diabetes). Respiratory acidosis, decreased oxygen saturation, lymphopenia, and increased CRP were the most common finding before intubation. 31 patients had no comorbidity conditions. However, 27 patients had more than one comorbidity condition, and 23 experienced acute respiratory distress syndrome. The mortality rate was 49.2%. Discussion: Although all laboratory parameters and patients symptoms can affect the treatment outcome, it was found that WBC and absolute lymphocyte count, BUN, SOFA and APACHE scores, inflammatory index ratio CRP / LDH % CRP / ESR% and ESR / LDH%, arterial blood gas indices, pulse rate, and patient temperature before intubation are among the parameters that can affect the patient's 14-day prognosis. Conclusion: Except for the mentioned items, CRP / LDH% ratio seems to be a good indicator for checking the prognosis of discharge or death of patients within 14 days, However, CRP / ESR% and ESR / LDH% are appropriate criteria for determining the prognosis for discharge or stay in the ICU for more than 14 days.


1981 ◽  
Vol 51 (1) ◽  
pp. 78-83 ◽  
Author(s):  
Y. L. Lai ◽  
J. E. Lamm ◽  
J. Hildebrandt

Awake rats, with chronically implanted arterial catheters and abdominal thermistors, were continuously exposed to 5 or 7% CO2 in air in an environmental chamber for up to 3 wk. To obtain measurements, rats were transferred to a body plethysmograph flushed with the same CO2 mixture, and, after stabilization, O2 consumption (Vo2), ventilation (VE), and arterial blood gases (ABG) were determined. After 2-h exposure, VE, tidal volume/inspiratory time (VT/TI), and VO2 were significantly increased. Thereafter, VE and VT/TI fell gradually with time, the largest decrease occurring within the 1st day of exposure. The increase in VO2 was maintained up to 3 days and then declined. ABG revealed extensive metabolic compensation for respiratory acidosis within 3–7 days. delta(VT/TI) correlated well with delta VE and delta [HCO3]a (P less than 0.05). It is likely that the gradual return toward normal pHa reduces ventilatory drive (VT/TI), which in turn lowers VE. Estimated alveolar ventilation did not decrease consistently with time in parallel with VE, suggesting that the early ventilatory overshoot might also be due to an increase in dead space.


1986 ◽  
Vol 122 (1) ◽  
pp. 209-222
Author(s):  
ROBERT G. BOUTILIER ◽  
GRAHAM SHELTON

1. Pre- and post-dive breathing patterns, blood oxygenation and acid-base balance have been examined in voluntarily and forcibly submerged Xenopus laevis. 2. Enforced 30-min dives led to a large acidosis with both respiratory (CO2) and metabolic (lactic acid) components. Complete recovery of the arterial blood variables after such dives took more than 4h. 3. Lung ventilation (measured by a pneumotachograph) following enforced dives was always markedly elevated compared with levels either before or after voluntary dives of the same duration. 4. In undisturbed Xenopus, diving freely for periods of 30 min or more, there was no accumulation of lactic acid and the fall in blood oxygen, increase in CO2 and the associated respiratory acidosis were all corrected within the first few breaths upon surfacing. 5. The evidence presented here leads us to conclude that anaerobiosis is unimportant during voluntary dives, even when these are of considerable duration.


2019 ◽  
Vol 6 (4) ◽  
pp. 1299
Author(s):  
Poonam Gupta ◽  
Anand Kumar ◽  
Ajeet Kumar Chaurasia ◽  
Arvind Gupta

Background: Microalbuminuria is a sign of glomerular dysfunction in general and sign of tubulointerstitial disease to a lesser extent. Hypoxia induces endothelial cell to release a number of different vasoactive agents including endotheline-1, platelet derived growth factor (PDGF), nitric oxide; that causes endothelial injury and lead to microalbuminuria. This study was aimed to assess the prevalence of microalbuminuria in COPD patients and assess the Relationship of microalbuminuria with the disease severity in the forms of FEV1, PaO2, PaCO2, and BODE INDEX in COPD patients.Methods: Total 130 COPD patients were included in our cross sectional study. Total patients were divided into two groups, 1st group was COPD with microalbuminuria while 2nd group was COPD without microalbuminuria. Lung function test, 6 min walk distance, arterial blood pressure (BP), BODE index, arterial blood gases, fasting and post prandial plasma glucose and kidney function tests were measured. Screening for microalbuminuria was done by measuring urinary microalbumin in a random spot urine collection.Results: The prevalence of microalbuminuria was 29.23% in patients of COPD. As compared with COPD without microalbuminuria group, COPD with microalbuminuria group were more hypoxic (12% vs 74%, P=0.0001 ), more hypercapnic (22% vs 84%, p=0.00001) and most of the patients with grade III (16% vs 34%, p=0.00001) or grade IV (19% vs 47%, p=0.00001) severity (according to GOLD criteria).Conclusions: Patients with severe COPD with hypoxemia or hypercapnia were significantly associated with microalbuminuria.


2020 ◽  
Vol 120 (12) ◽  
pp. 2729-2736
Author(s):  
Mauricio Gonzalez-Garcia ◽  
Dario Maldonado ◽  
Margarita Barrero ◽  
Alejandro Casas ◽  
Rogelio Perez-Padilla ◽  
...  

2015 ◽  
Vol 308 (11) ◽  
pp. R895-R906 ◽  
Author(s):  
Michael M. Tymko ◽  
Philip N. Ainslie ◽  
David B. MacLeod ◽  
Chris K. Willie ◽  
Glen E. Foster

We sought to characterize and quantify the performance of a portable dynamic end-tidal forcing (DEF) system in controlling the partial pressure of arterial CO2 (PaCO2) and O2 (PaO2) at low (LA; 344 m) and high altitude (HA; 5,050 m) during an isooxic CO2 test and an isocapnic O2 test, which is commonly used to measure ventilatory and vascular reactivity in humans ( n = 9). The isooxic CO2 tests involved step changes in the partial pressure of end-tidal CO2 (PetCO2) of −10, −5, 0, +5, and +10 mmHg from baseline. The isocapnic O2 test consisted of a 10-min hypoxic step (PetO2 = 47 mmHg) from baseline at LA and a 5-min euoxic step (PetO2 = 100 mmHg) from baseline at HA. At both altitudes, PetO2 and PetCO2 were controlled within narrow limits (<1 mmHg from target) during each protocol. During the isooxic CO2 test at LA, PetCO2 consistently overestimated PaCO2 ( P < 0.01) at both baseline (2.1 ± 0.5 mmHg) and hypercapnia (+5 mmHg: 2.1 ± 0.7 mmHg; +10 mmHg: 1.9 ± 0.5 mmHg). This Pa-PetCO2 gradient was approximately twofold greater at HA ( P < 0.05). At baseline at both altitudes, PetO2 overestimated PaO2 by a similar extent (LA: 6.9 ± 2.1 mmHg; HA: 4.5 ± 0.9 mmHg; both P < 0.001). This overestimation persisted during isocapnic hypoxia at LA (6.9 ± 0.6 mmHg) and during isocapnic euoxia at HA (3.8 ± 1.2 mmHg). Step-wise multiple regression analysis, on the basis of the collected data, revealed that it may be possible to predict an individual's arterial blood gases during DEF. Future research is needed to validate these prediction algorithms and determine the implications of end-tidal-to-arterial gradients in the assessment of ventilatory and/or vascular reactivity.


Sign in / Sign up

Export Citation Format

Share Document