Preparation of serial sections

1989 ◽  
Vol 4 ◽  
pp. 146-156 ◽  
Author(s):  
Michael R. Sandy

Serial sectioning (also referred to as serial grinding) is used to investigate the internal structures of three-dimensional (rock or fossil). In this process series of sections are ground or cut in sequence through a specimen to reveal its internal structures. The specimen is ground down against an abrasive surface (e.g., abrasive powder on a sheet of steel or a rotating diamond wheel on a lathe) or cut with a saw blade. The details of each section can be recorded by drawing or photography. A permanent record of each surface can be made by taking acetate peels and mounting them in glass slides (Wilson and Palmer, this volume, Chapter 13). Serial section information can be digitized and reconstructed in three-dimensions using computer techniques (Chapman, this volume, Chapter 15).

1966 ◽  
Vol 28 (1) ◽  
pp. 37-49 ◽  
Author(s):  
J. C. Thaemert

The muscularis externa of the intestinal wall of frogs was fixed in osmium tetroxide, embedded in Vestopal-W, serially sectioned for electron microscopy, and stained with uranyl acetate. A method to obtain individually mounted and properly positioned serial sections is described. The three-dimensional techniques used during the course of this investigation demonstrate that it is possible to examine carefully relatively large areas of tissue on individual serial sections with the electron microscope and subsequently to construct montages of electron micrographs of pertinent areas from each section. Several carefully rendered interrelationships of nerve processes and smooth muscle cells in three dimensions are exhibited and described. Recent studies of other neuro-effector relationships are discussed in relation to the present status of the nature and organization of the autonomic nervous system in visceral organs.


Author(s):  
Eric Lifshin ◽  
James Evertsen ◽  
Edward Principe ◽  
John Friel

Abstract Increased insight into the internal structure of microelectronic devices can be achieved through the use of three dimensional (3D) imaging based on image stacks of serial sections obtained with a combined electron and ion beam (CrossBeam) FIB. This study describes how such data can be collected and presented, some of the factors that need to be optimized to get the best images, and the limitations of the method. It can be viewed as a first step in the emerging area of high resolution 3D microscopy, a technique that can lead to more accurate characterization of the shapes of internal structures and their interconnectivity at the nanoscale.


2000 ◽  
Vol 8 (10) ◽  
pp. 27-28
Author(s):  
Debbie Sherman

I did serial sectioning for years on large single hole grids using a very simple technique that made the potential problems of film thickness, wrinkles and section loss very minor. I was not the original developer of the method and do not remember who originally gave it to me. It goes as follows:1)Have your machine shop cut some thin pieces of Plexiglas into the size of glass slides. At one end, drill about a dozen holes, roughly 5 mm in diameter, in an area about the size of a formvar film cast on glass slides. These slides will serve as your template for holding your films.


1989 ◽  
Vol 4 ◽  
pp. 157-164 ◽  
Author(s):  
Ralph E. Chapman

The importance of serial sections for the analysis of the morphology of fossil organisms has been stressed by a number of authors (e.g., Westbroek, 1967, 1969; Cooper, 1983; Sandy, 1986, this volume, Chapter 14) because they provide a way to visualize the three-dimensional structure, both internal and external, of specimens that cannot be studied in other ways. The importance of internal structures for the taxonomy of many groups (e.g., the brachidia of brachiopods; Westbroek et al., 1976; Cooper, 1983) makes the study of serial sections imperative in many cases for proper taxonomic identification.


1995 ◽  
Vol 32 (3) ◽  
pp. 217-227 ◽  
Author(s):  
Joan T. Richtsmeier ◽  
Chul H. Paik ◽  
Peter C. Elfert ◽  
Theodore M. Cole ◽  
Holly R. Dahlman

Computed tomography (CT) has brought to the craniofacial surgeon a three-dimensional representation of internal structures. CT scans provide visualization of anatomy for preoperative planning and postoperative evaluation. Beyond visualization, however, a CT scan enables assessment of measurements useful to clinicians and basic scientists. All measurement systems used with CT require the ability to accurately locate regions of interest on the image (i.e., areas, volumes, outlines, curves, surfaces, points). This study evaluates the precision and repeatability of locating anatomic landmarks in three dimensions on CT slice images, and validates these locations using an established measurement system. The average error of landmark position is always less than 0.5 mm and for some landmarks error is negligible. Repeatability studies show that less than 2% of the total variance in our data is due to measurement inaccuracy. Although data collected from CT scans are internally consistent, validation results caution the use of CT data In combination with data collected using calipers or other direct means of measurement.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3861 ◽  
Author(s):  
Jérémy Tissier ◽  
Jean-Claude Rage ◽  
Michel Laurin

Fossils are almost always represented by hard tissues but we present here the exceptional case of a three-dimensionally preserved specimen that was ‘mummified’ (likely between 40 and 34 million years ago) in a terrestrial karstic environment. This fossil is the incomplete body of a salamander, Phosphotriton sigei, whose skeleton and external morphology are well preserved, as revealed by phase-contrast synchrotron X-ray microtomography. In addition, internal structures composed of soft tissues preserved in three dimensions are now identified: a lung, the spinal cord, a lumbosacral plexus, the digestive tract, muscles and urogenital organs that may be cloacal glands. These are among the oldest known cases of three-dimensional preservation of these organs in vertebrates and shed light on the ecology of this salamander. Indeed, the digestive tract contains remains of a frog, which represents the only known case of an extinct salamander that fed on a frog, an extremely rare type of predation in extant salamanders. These new data improve our scarce knowledge on soft tissue anatomy of early urodeles and should prove useful for future biologists and palaeontologists working on urodele evolutionary biology. We also suggest that the presence of bat guano and carcasses represented a close source of phosphorus, favouring preservation of soft tissues. Bone microanatomy indicates that P. sigei was likely amphibious or terrestrial, and was probably not neotenic.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


Author(s):  
Jane K. Rosenthal ◽  
Dianne L. Atkins ◽  
William J. Marvin ◽  
Penny A. Krumm

To comprehend structural changes in cardiac myocytes accompanying adrenergic innervation, it is essential that a three dimensional analysis be performed. To date, biological studies which utilize stereological methods have been limited to cells in tissue and in organs. Our laboratory has utilized current stereological techniques for measuring absolute volumes of individual myocytes in primary culture. Cell volumes are calculated for two distinct groups of cells at 96 hours in culture: isolated myocytes and myocytes innervated with adrenergic neurons (Figure 1).Cardiac myocytes are cultured from the ventricular apices of newborn rats. Cells are plated directly onto tissue culture dishes with or without preplated explants from the paravertebral thoracolumbar sympathetic chain. On day four cultures are photographed and marked for one-to-one cell location. Following conventional fixation and embeddment in eponate-12, the cells are relocated and mounted for microtomy. The cells are completely sectioned at 120nm in their parallel orientation to the surface of the dish (Figure 2). Serial sections are collected on formvar coated slotted grids and are recorded in sequence.


Sign in / Sign up

Export Citation Format

Share Document