scholarly journals Pre-Ediacaran multicellular life: harbinger of a Phanerozoic radiation

1992 ◽  
Vol 6 ◽  
pp. 47-47
Author(s):  
Nicholas J. Butterfield

Multicellular organisms must have had a substantial pre-Ediacaran history, but the fossil evidence is sparse and often equivocal. The taxonomic resolution necessary to constrain phylogenetic hypotheses is limited largely to Lagerstätte-grade fossils that retain evidence of diagnostic cell division patterns. Uniseriate and multiseriate filaments in the 1267-723 Ma Hunting Formation, Somerset Island, derive from transverse and longitudinal intercalary cell division programs indistinguishable from those of the modern red alga Bangia, and establish a significantly pre-Ediacaran datum point for the Rhodophyta. Likewise, on the basis of a distinctive “segregative cell division”, three taxa of siphonocladalean green algae (Chlorophyta) are identified in the ca. 750 Ma Svanbergfjellet Formation, Spitsbergen. Process-bearing vesicles in the Svanbergfjellet sequence further compare with the germinating zoospores of the modern chromophyte alga Vaucheria, while convincing Vaucheria-like thalli are reported from ca. 900 Ma deposits in Siberia. The broad co-occurrence of multicellular Rhodophyta, Chlorophyta, and Chromophyta by at least 750 Ma ago accords well with molecular evidence that suggests the three principal algal clades diverged from a common ancestor during a brief but marked radiation relatively late in eukaryote evolution.Complex multicellularity featuring cellular and tissue(?) differentiation is also encountered in the pre-Ediacaran fossil record. A large ornate form in the Svanbergfjellet succession preserves at least six readily distinguishable cell types and, despite its taxonomic uncertainty, can be characterized as at least as complex as the most complex modern algae or fungi. No cellularity is preserved in the late Proterozoic macrofossil Tawuia; however, SEM and light microscopy of its isolated wall reveal a complex histology suggestive of a relatively advanced grade of multicellularity. Another Svanbergfjellet macrofossil has a distinct wall structure and bears a terminal pair of large reniform structures; if these prove to be truly bilaterally symmetrical, this fossil represents a grade of organization otherwise not recognized until the Ediacaran. Further analysis of these and other pre-Ediacaran ‘problematica’ may clarify their taxonomic relationships and promises to resolve at least some of the ‘Cambrian explosion’ into a meaningful sequence of evolutionary change.

2018 ◽  
Vol 34 (1) ◽  
pp. 289-310 ◽  
Author(s):  
Edith Pierre-Jerome ◽  
Colleen Drapek ◽  
Philip N. Benfey

A major challenge in developmental biology is unraveling the precise regulation of plant stem cell maintenance and the transition to a fully differentiated cell. In this review, we highlight major themes coordinating the acquisition of cell identity and subsequent differentiation in plants. Plant cells are immobile and establish position-dependent cell lineages that rely heavily on external cues. Central players are the hormones auxin and cytokinin, which balance cell division and differentiation during organogenesis. Transcription factors and miRNAs, many of which are mobile in plants, establish gene regulatory networks that communicate cell position and fate. Small peptide signaling also provides positional cues as new cell types emerge from stem cell division and progress through differentiation. These pathways recruit similar players for patterning different organs, emphasizing the modular nature of gene regulatory networks. Finally, we speculate on the outstanding questions in the field and discuss how they may be addressed by emerging technologies.


2008 ◽  
Vol 36 (3) ◽  
pp. 421-424 ◽  
Author(s):  
Sue Vaughan ◽  
Keith Gull

Undoubtedly, there are fundamental processes driving the structural mechanics of cell division in eukaryotic organisms that have been conserved throughout evolution and are being revealed by studies on organisms such as yeast and mammalian cells. Precision of structural mechanics of cytokinesis is however probably no better illustrated than in the protozoa. A dramatic example of this is the protozoan parasite Trypanosoma brucei, a unicellular flagellated parasite that causes a devastating disease (African sleeping sickness) across Sub-Saharan Africa in both man and animals. As trypanosomes migrate between and within a mammalian host and the tsetse vector, there are periods of cell proliferation and cell differentiation involving at least five morphologically distinct cell types. Much of the existing cytoskeleton remains intact during these processes, necessitating a very precise temporal and spatial duplication and segregation of the many single-copy organelles. This structural precision is aiding progress in understanding these processes as we apply the excellent reverse genetics and post-genomic technologies available in this system. Here we outline our current understanding of some of the structural aspects of cell division in this fascinating organism.


1979 ◽  
Vol 81 (1) ◽  
pp. 123-136 ◽  
Author(s):  
N Agabian ◽  
M Evinger ◽  
G Parker

An essential event in developmental processes is the introduction of asymmetry into an otherwise undifferentiated cell population. Cell division in Caulobacter is asymmetric; the progeny cells are structurally different and follow different sequences of development, thus providing a useful model system for the study of differentiation. Because the progeny cells are different from one another, there must be a segregation of morphogenetic and informational components at some time in the cell cycle. We have examined the pattern of specific protein segregation between Caulobacter stalked and swarmer daughter cells, with the rationale that such a progeny analysis would identify both structurally and developmentally important proteins. To complement the study, we have also examined the pattern of protein synthesis during synchronous growth and in various cellular fractions. We show here, for the first time, that the association of proteins with a specific cell type may result not only from their periodicity of synthesis, but also from their pattern of distribution at the time of cell division. Several membrane-associated and soluble proteins are segregated asymmetrically between progeny stalked and swarmer cells. The data further show that a subclass of soluble proteins becomes associated with the membrane of the progeny stalked cells. Therefore, although the principal differentiated cell types possess different synthetic capabilities and characteristic proteins, the asymmetry between progeny stalked and swarmer cells is generated primarily by the preferential association of specific soluble proteins with the membrane of only one daughter cell. The majority of the proteins which exhibit this segregation behavior are synthesized during the entire cell cycle and exhibit relatively long, functional messenger RNA half-lives.


2018 ◽  
Author(s):  
Evgeny Zatulovskiy ◽  
Daniel F. Berenson ◽  
Benjamin R. Topacio ◽  
Jan M. Skotheim

Cell size is fundamental to function in different cell types across the human body because it sets the scale of organelle structures, biosynthesis, and surface transport1,2. Tiny erythrocytes squeeze through capillaries to transport oxygen, while the million-fold larger oocyte divides without growth to form the ~100 cell pre-implantation embryo. Despite the vast size range across cell types, cells of a given type are typically uniform in size likely because cells are able to accurately couple cell growth to division3–6. While some genes whose disruption in mammalian cells affects cell size have been identified, the molecular mechanisms through which cell growth drives cell division have remained elusive7–12. Here, we show that cell growth acts to dilute the cell cycle inhibitor Rb to drive cell cycle progression from G1 to S phase in human cells. In contrast, other G1/S regulators remained at nearly constant concentration. Rb is a stable protein that is synthesized during S and G2 phases in an amount that is independent of cell size. Equal partitioning to daughter cells of chromatin bound Rb then ensures that all cells at birth inherit a similar amount of Rb protein. RB overexpression increased cell size in tissue culture and a mouse cancer model, while RB deletion decreased cell size and removed the inverse correlation between cell size at birth and the duration of G1 phase. Thus, Rb-dilution by cell growth in G1 provides a long-sought cell autonomous molecular mechanism for cell size homeostasis.


2018 ◽  
Author(s):  
Kimberley N. Babos ◽  
Kate E. Galloway ◽  
Kassandra Kisler ◽  
Madison Zitting ◽  
Yichen Li ◽  
...  

AbstractAlthough cellular reprogramming continues to generate new cell types, reprogramming remains a rare cellular event. The molecular mechanisms that limit reprogramming, particularly to somatic lineages, remain unclear. By examining fibroblast-to-motor neuron conversion, we identify a previously unappreciated dynamic between transcription and replication that determines reprogramming competency. Transcription factor overexpression forces most cells into states that are refractory to reprogramming and are characterized by either hypertranscription with little cell division, or hyperproliferation with low transcription. We identify genetic and chemical factors that dramatically increase the number of cells capable of both hypertranscription and hyperproliferation. Hypertranscribing, hyperproliferating cells reprogram at 100-fold higher, near-deterministic rates. We demonstrate that elevated topoisomerase expression endows cells with privileged reprogramming capacity, suggesting that biophysical constraints limit cellular reprogramming to rare events.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sofia Duarte ◽  
Álvaro Viedma-Poyatos ◽  
Elena Navarro-Carrasco ◽  
Alma E. Martínez ◽  
María A. Pajares ◽  
...  

Abstract The vimentin network displays remarkable plasticity to support basic cellular functions and reorganizes during cell division. Here, we show that in several cell types vimentin filaments redistribute to the cell cortex during mitosis, forming a robust framework interwoven with cortical actin and affecting its organization. Importantly, the intrinsically disordered tail domain of vimentin is essential for this redistribution, which allows normal mitotic progression. A tailless vimentin mutant forms curly bundles, which remain entangled with dividing chromosomes leading to mitotic catastrophes or asymmetric partitions. Serial deletions of vimentin tail domain gradually impair cortical association and mitosis progression. Disruption of f-actin, but not of microtubules, causes vimentin bundling near the chromosomes. Pathophysiological stimuli, including HIV-protease and lipoxidation, induce similar alterations. Interestingly, full filament formation is dispensable for cortical association, which also occurs in vimentin particles. These results unveil implications of vimentin dynamics in cell division through its interplay with the actin cortex.


2019 ◽  
Vol 218 (4) ◽  
pp. 1408-1421 ◽  
Author(s):  
Xiaohui Liu ◽  
Jiazhou Li ◽  
Heyu Zhao ◽  
Boyang Liu ◽  
Thomas Günther-Pomorski ◽  
...  

Even though cell walls have essential functions for bacteria, fungi, and plants, tools to investigate their dynamic structure in living cells have been missing. Here, it is shown that changes in the intensity of the plasma membrane dye FM4-64 in response to extracellular quenchers depend on the nano-scale porosity of cell walls. The correlation of quenching efficiency and cell wall porosity is supported by tests on various cell types, application of differently sized quenchers, and comparison of results with confocal, electron, and atomic force microscopy images. The quenching assay was used to investigate how changes in cell wall porosity affect the capability for extension growth in the model plant Arabidopsis thaliana. Results suggest that increased porosity is not a precondition but a result of cell extension, thereby providing new insight on the mechanism plant organ growth. Furthermore, it was shown that higher cell wall porosity can facilitate the action of antifungal drugs in Saccharomyces cerevisiae, presumably by facilitating uptake.


IAWA Journal ◽  
2008 ◽  
Vol 29 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Katarina Čufar ◽  
Jožica Gričar ◽  
Martin Zupančič ◽  
Gerald Koch ◽  
Uwe Schmitt

Evaluating the state of deterioration of water-logged archaeological wood is necessary in order to select treatments for its conservation and storage, particularly in the case of valuable archaeological artefacts. For this purpose archaeological wood of ash (Fraxinus sp.) and oak (Quercus sp.) buried in water-logged conditions at prehistoric settlements on the Ljubljansko barje (Ljubljana moor), Slovenia, aged approx. 5,200 and 4,500 years, was investigated by means of light microscopy (LM), transmission electron microscopy (TEM) and cellular UV-microspectrophotometry (UMSP). LM and TEM revealed that the ash wood aged 5,200 years was the least preserved. The secondary walls of fibres, vessels and parenchyma cells were considerably thinner than in normal wood, indicating distinct degradation. TEM and UMSP additionally revealed strong delignification of the remaining parts of the secondary walls of all cell types. The compound middle lamellae appeared structurally intact, but had lower UV-absorbance than normal wood of the same species. The cell corners were topochemically unchanged, as shown by high analogue UV-absorbance. The UV-absorbance maxima at a wavelength of 278 nm corresponded to those of hardwood lignins. The oak heartwood was generally better preserved than the ash wood. Within each species, the 4,500- year-old samples generally appeared better preserved than those 5,200 years old.


Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 416 ◽  
Author(s):  
Xiao-Tao Zeng ◽  
Qi-Ya Zhang

The two putative proteins RGV-63R and RGV-91R encoded by Rana grylio virus (RGV) are DNA polymerase and proliferating cell nuclear antigen (PCNA) respectively, and are core proteins of iridoviruses. Here, the interaction between RGV-63R and RGV-91R was detected by a yeast two-hybrid (Y2H) assay and further confirmed by co-immunoprecipitation (co-IP) assays. Subsequently, RGV-63R or RGV-91R were expressed alone or co-expressed in two kinds of aquatic animal cells including amphibian Chinese giant salamander thymus cells (GSTCs) and fish Epithelioma papulosum cyprinid cells (EPCs) to investigate their localizations and effects on RGV genome replication. The results showed that their localizations in the two kinds of cells are consistent. RGV-63R localized in the cytoplasm, while RGV-91R localized in the nucleus. However, when co-expressed, RGV-63R localized in both the cytoplasm and the nucleus, and colocalized with RGV-91R in the nucleus. 91R△NLS represents the RGV-91R deleting nuclear localization signal, which is localized in the cytoplasm and colocalized with RGV-63R in the cytoplasm. qPCR analysis revealed that sole expression and co-expression of the two proteins in the cells of two species significantly promoted RGV genome replication, while varying degrees of viral genome replication levels may be linked to the cell types. This study provides novel molecular evidence for ranavirus cross-species infection and replication.


Sign in / Sign up

Export Citation Format

Share Document