scholarly journals Effect of soybean growth stage on sensitivity to sublethal rates of dicamba and 2,4-D

2019 ◽  
Vol 33 (04) ◽  
pp. 555-561 ◽  
Author(s):  
Alanna B. Scholtes ◽  
Benjamin P. Sperry ◽  
Daniel B. Reynolds ◽  
J. Trenton Irby ◽  
Thomas W. Eubank ◽  
...  

AbstractField experiments were conducted in 2012 and 2013 across four locations for a total of 6 site-years in the midsouthern United States to determine the effect of growth stage at exposure on soybean sensitivity to sublethal rates of dicamba (8.8 g ae ha−1) and 2,4-D (140 g ae ha−1). Regression analysis revealed that soybean was most susceptible to injury from 2,4-D when exposed between 413 and 1,391 accumulated growing degree days (GDD) from planting, approximately between V1 and R2 growth stages. In terms of terminal plant height, soybean was most susceptible to 2,4-D between 448 and 1,719 GDD, or from V1 to R4. However, maximum susceptibility to 2,4-D was only between 624 and 1,001 GDD or from V3 to V5 for yield loss. As expected, soybean was sensitive to dicamba for longer spans of time, ranging from 0 to 1,162 GDD for visible injury or from emergence to R2. Likewise, soybean height was most affected when dicamba exposure occurred between 847 and 1,276 GDD or from V4 to R2. Regarding grain yield, soybean was most susceptible to dicamba between 820 and 1,339 GDD or from V4 to R2. Consequently, these data indicate that soybean response to 2,4-D and dicamba can be variable within vegetative or reproductive growth stages; therefore, specific growth stage at the time of exposure should be considered when evaluating injury from off-target movement. In addition, application of dicamba near susceptible soybean within the V4 to R2 growth stages should be avoided because this is the time of maximum susceptibility. Research regarding soybean sensitivity to 2,4-D and dicamba should focus on multiple exposure times and also avoid generalizing growth stages to vegetative or reproductive.

2019 ◽  
Vol 33 (6) ◽  
pp. 785-793 ◽  
Author(s):  
Ethann R. Barnes ◽  
Stevan Z. Knezevic ◽  
Nevin C. Lawrence ◽  
Suat Irmak ◽  
Oscar Rodriguez ◽  
...  

AbstractUnderstanding the critical time of weed removal (CTWR) is necessary for designing effective weed management programs in popcorn production that do not result in yield reduction. The objective of this study was to determine the CTWR in popcorn with and without a premix of atrazine and S-metolachlor applied PRE. Field experiments were conducted at the University of Nebraska–Lincoln, South Central Agricultural Laboratory near Clay Center, NE in 2017 and 2018. The experiment was laid out in a split-plot design with PRE herbicide as the main plot and weed removal timing as the subplot. Main plots included no herbicide or atrazine/S-metolachlor applied PRE. Subplot treatments included a weed-free control, a non-treated control, and weed removal timing at V3, V6, V9, V15, and R1 popcorn growth stages and then kept weed free throughout the season. A four-parameter log-logistic function was fitted to percentage popcorn yield loss and growing degree days separately to each main plot. The number of growing degree days, when 5% yield loss was achieved, was extracted from the model and compared between main plots. The CTWR was from the V4 to V5 popcorn growth stage in absence of PRE herbicide. With atrazine/S-metolachlor applied PRE, the CTWR was delayed until V10 to V15. It is concluded that, to avoid yield loss, weeds must be controlled before the V4 popcorn growth stage when no PRE herbicide is applied, and PRE herbicide, such as atrazine/S-metolachlor in this study, can delay the CTWR until the V10 growth stage.


2019 ◽  
Vol 99 (4) ◽  
pp. 437-443
Author(s):  
Nader Soltani ◽  
Robert E. Nurse ◽  
Amit J. Jhala ◽  
Peter H. Sikkema

A study consisting of 13 field experiments was conducted during 2014–2016 in southwestern Ontario and southcentral Nebraska (Clay Center) to determine the effect of late-emerging weeds on the yield of glyphosate-resistant soybean. Soybean was maintained weed-free with glyphosate (900 g ae ha−1) up to the VC (cotyledon), V1 (first trifoliate), V2 (second trifoliate), V3 (third trifoliate), V4 (fourth trifoliate), and R1 (beginning of flowering) growth stages, after which weeds were allowed to naturally infest the soybean plots. The total weed density was reduced to 24%, 63%, 67%, 72%, 76%, and 92% in Environment 1 (Exeter, Harrow, and Ridgetown) when soybean was maintained weed-free up to the VC, V1, V2, V3, V4, and R1 soybean growth stages, respectively. The total weed biomass was reduced by 33%, 82%, 95%, 97%, 97%, and 100% in Environment 1 (Exeter, Harrow, and Ridgetown) and 28%, 100%, 100%, 100%, 100%, and 100% in Environment 2 (Clay Center) when soybean was maintained weed-free up to the VC, V1, V2, V3, V4, and R1 stages, respectively. The critical weed-free periods for a 2.5%, 5%, and 10% yield loss in soybean were the V1–V2, VC–V1, and VC–V1 soybean stages in Environment 1 (Exeter, Harrow, and Ridgetown) and V2–V3, V2–V3, and V1–V2 soybean stages in Environment 2 (Clay Center), respectively. For the weed species evaluated, there was a minimal reduction in weed biomass (5% or less) when soybean was maintained weed-free beyond the V3 soybean growth stage. These results shows that soybean must be maintained weed-free up to the V3 growth stage to minimize yield loss due to weed interference.


2019 ◽  
Vol 33 (2) ◽  
pp. 321-328 ◽  
Author(s):  
John T. Buol ◽  
Daniel B. Reynolds ◽  
Darrin M. Dodds ◽  
J. Anthony Mills ◽  
Robert L. Nichols ◽  
...  

AbstractRecent commercialization of auxin herbicide–based weed control systems has led to increased off-target exposure of susceptible cotton cultivars to auxin herbicides. Off-target deposition of dilute concentrations of auxin herbicides can occur on cotton at any stage of growth. Field experiments were conducted at two locations in Mississippi from 2014 to 2016 to assess the response of cotton at various growth stages after exposure to a sublethal 2,4-D concentration of 8.3 g ae ha−1. Herbicide applications occurred weekly from 0 to 14 weeks after emergence (WAE). Cotton exposure to 2,4-D at 2 to 9 WAE resulted in up to 64% visible injury, whereas 2,4-D exposure 5 to 6 WAE resulted in machine-harvested yield reductions of 18% to 21%. Cotton maturity was delayed after exposure 2 to 10 WAE, and height was increased from exposure 6 to 9 WAE due to decreased fruit set after exposure. Total hand-harvested yield was reduced from 2,4-D exposure 3, 5 to 8, and 13 WAE. Growth stage at time of exposure influenced the distribution of yield by node and position. Yield on lower and inner fruiting sites generally decreased from exposure, and yield partitioned to vegetative or aborted positions and upper fruiting sites increased. Reductions in gin turnout, micronaire, fiber length, fiber-length uniformity, and fiber elongation were observed after exposure at certain growth stages, but the overall effects on fiber properties were small. These results indicate that cotton is most sensitive to low concentrations of 2,4-D during late vegetative and squaring growth stages.


2018 ◽  
Vol 32 (5) ◽  
pp. 513-519 ◽  
Author(s):  
Spencer McCown ◽  
Tom Barber ◽  
Jason K. Norsworthy

AbstractIntroduction of the Roundup Ready® Xtend system (Monsanto Co., St. Louis, MO) provides an alternative weed management option for growers, but of concern is the risk of dicamba injury to sensitive crops, particularly soybean from off-target movement and tank contamination. Experiments were conducted to determine the response of soybean to low rates of dicamba over a wide range of application timings. Two glufosinate-resistant varieties (HBK 4950LL–indeterminate and HALO 5.45LL–determinate) commonly grown in Arkansas were chosen for these studies. Two rates of dicamba, 2.18 and 8.75 g ae ha–1(1/256× and 1/64× of the POST labeled rate for dicamba-resistant soybean), were applied at two vegetative (V4, V6) and six reproductive (R1 to R6) growth stages. Compared to the nontreated control, dicamba applied during late vegetative and early reproductive growth of soybean caused leaf injury, plant height reduction, and seed yield loss for both soybean cultivars. Averaged across dicamba rates applied at R1, soybean seed yield was reduced 14% for the HBK 4950LL cultivar and 19% for the HALO 5.45LL cultivar. Averaged over rates, dicamba applied at R1 to the HALO 5.45LL and HBK 4950LL soybean resulted in 48% and 43% visible injury 4 wk after treatment, respectively. Grain yield was similar to that of the nontreated control when dicamba was applied at the later reproductive stages averaged across rates.


2019 ◽  
Vol 33 (04) ◽  
pp. 595-600
Author(s):  
Benjamin P. Sperry ◽  
Benjamin H. Lawrence ◽  
Jason A. Bond ◽  
Daniel B. Reynolds ◽  
Bobby R. Golden ◽  
...  

AbstractResearch was conducted from 2013 to 2015 across three sites in Mississippi to evaluate corn response to sublethal paraquat or fomesafen (105 and 35 g ai ha−1, respectively) applied PRE, or to corn at the V1, V3, V5, V7, or V9 growth stages. Fomesafen injury to corn at three d after treatment (DAT) ranged from 0% to 38%, and declined over time. Compared with the nontreated control (NTC), corn height 14 DAT was reduced approximately 15% due to fomesafen exposure at V5 or V7. Exposure at V1 or V7 resulted in 1,220 and 1,110 kg ha−1 yield losses, respectively, compared with the NTC, but yield losses were not observed at any other growth stage. Fomesafen exposure at any growth stage did not affect corn ear length or number of kernel rows relative to the NTC. Paraquat injury to corn ranged from 26% to 65%, depending on growth stage and evaluation interval. Corn exposure to paraquat at V3 or V5 consistently caused greater injury across evaluation intervals, compared with other growth stages. POST timings of paraquat exposure resulted in corn height reductions of 13% to 50%, except at V7, which was most likely due to rapid internode elongation at that stage. Likewise, yield loss occurred after all exposure times of paraquat except PRE, compared with the NTC. Corn yield was reduced 1,740 to 5,120 kg ha−1 compared with the NTC, generally worsening as exposure time was delayed. Paraquat exposure did not reduce corn ear length, compared with the NTC, at any growth stage. However, paraquat exposure at V3 or V5 was associated with reduction of kernel rows by 1.1 and 1.7, respectively, relative to the NTC. Paraquat and fomesafen applications near corn should be avoided if conditions are conducive for off-target movement, because significant injury and yield loss can result.


2020 ◽  
pp. 1-5
Author(s):  
Hunter D. Bowman ◽  
Tom Barber ◽  
Jason K. Norsworthy ◽  
Trenton L. Roberts ◽  
Jason Kelley ◽  
...  

Abstract Previous research has shown that glufosinate and nicosulfuron at low rates can cause yield loss to grain sorghum. However, research has not been conducted to pinpoint the growth stage at which these herbicides are most injurious to grain sorghum. Therefore, field tests were conducted in 2016 and 2017 to determine the most sensitive growth stage for grain sorghum exposure to both glufosinate and nicosulfuron. Field test were designed with factor A being the herbicide applied (glufosinate or nicosulfuron). Factor B consisted of timing of herbicide application including V3, V8, flagleaf, heading, and soft dough stages. Factor C was glufosinate or nicosulfuron rate where a proportional rate of 656 g ai ha−1 of glufosinate and 35 g ai ha−1 of nicosulfuron was applied at 1/10×, 1/50×, and 1/250×. Visible injury, crop canopy heights (cm), and yield were reported as a percent of the nontreated. At the V3 growth stage visible injury of 32% from the 1/10× rate of glufosinate and 51% from the 1/10× rate of nicosulfuron was observed. This injury was reduced by 4 wk after application (WAA) and no yield loss occurred. Nicosulfuron was more injurious than glufosinate at a 1/10× and 1/50× rate when applied at the V8 and flagleaf growth stages resulting in death of the shoot, reduced heading, and yield. Yield losses from the 1/10× rate of nicosulfuron were observed from V8 through early heading and ranged from 41% to 96%. Yield losses from the 1/50× rate of nicosulfuron were 14% to 16% at the flagleaf and V8 growth stages respectively. The 1/10× rate of glufosinate caused 36% visible injury 2 WAA when applied at the flagleaf stage, which resulted in a 16% yield reduction. By 4 WAA visible injury from either herbicide at less than the 1/10× rate was not greater than 4%. Results indicate that injury can occur, but yield losses are more probable from low rates of nicosulfuron at V8 and flagleaf growth stages.


2011 ◽  
Vol 48 (1) ◽  
pp. 127-137 ◽  
Author(s):  
ILIAS S. TRAVLOS ◽  
PANAGIOTIS J. KANATAS ◽  
GARIFALIA ECONOMOU ◽  
VASILIS E. KOTOULAS ◽  
DIMOSTHENIS CHACHALIS ◽  
...  

SUMMARYThe presence of velvetleaf (Abutilon theophrasti) in crops is increasing in arid and semi-arid environments. Field experiments were conducted in Greece in 2009 and 2010 to determine the influence of velvetleaf emergence time and maize (Zea mays) hybrids with different growth rates on maize yield and velvetleaf growth and fecundity. Velvetleaf was uniformly seeded in order to emerge at the 1, 3, 5 and 7-leaf stage of maize (V1, V3, V5 and V7 growth stages, respectively). Velvetleaf biomass, canopy area and seed production were significantly affected by the date of velvetleaf emergence. Velvetleaf plants emerging just after maize (V1) produced 7–17 times lower seed number, compared with the V5 growth stage. Maximum maize grain yield loss ranged from 26 to 37% for early emerging velvetleaf, and less than 6% yield loss occurred from velvetleaf seedlings emerging at V7 growth stage. Maize hybrids with high initial growth rate seem to be more competitive than the other hybrids. The results of this study are essential in the development of an integrated weed management strategy for maize in semi-arid environments, since they highlight the importance of the careful selection of a competitive maize hybrid and avoidance of early velvetleaf emergence.


2015 ◽  
Vol 42 (2) ◽  
pp. 109-120 ◽  
Author(s):  
B.H. Blanchett ◽  
T.L. Grey ◽  
E.P. Prostko ◽  
T.M. Webster

ABSTRACT The development of dicamba-resistant cotton and soybean cultivars has created great concern about the potential off-target movement of dicamba onto sensitive species, including broadleaf crops. Peanut is often grown in close proximity to cotton and soybean. Therefore, field studies were conducted during 2012 and 2013 at Plains, Ty Ty, and Attapulgus, GA to evaluate peanut response to rates of dicamba (35, 70, 140, 280, and 560 g ae ha−1) applied at preemergence (PRE), 10, 20, or 30 d after planting (DAP) corresponding to PRE, V2, V3, and V5 peanut growth stages, respectively. Nontreated controls were included for comparison. As dicamba rate increased, both peanut injury and peanut yield loss increased. Peanut response to dicamba was fit to log-logistic regression models for injury and linear regression models for yield loss. Peanut injury increased with rate of dicamba, but was variable among the locations. A general trend was that peanut plants became more sensitive to dicamba injury as plants approached reproductive stage, as evidenced through a declining linear relationship between I50 values (i.e. rate of dicamba that elicits a 50% crop response) and timing of application. PRE applications of dicamba had I50 values that ranged from 125 to 323 g ha−1 of dicamba, while I50 values were 44 to 48 g ha−1 of dicamba at the V5 peanut growth stage. There was a linear relationship between peanut yield and dicamba rate, with 560 g ha−1 causing maximum yield losses ranging from 0 to 86% when applied PRE, 24 to 82% when applied at V2 growth stage, 30 to 95% when applied at V3 growth stage, and 45 to 88% when applied at V5 growth stage. Across all treatments and locations, there was also a negative linear relationship between peanut yield and peanut crop injury, with a decline of 8.5% yield for every 10% increase in crop injury. Growers and their consultants/extension agents can use this peanut injury data to predict potential peanut yield loss from sprayer contamination or off-target movement of dicamba.


2017 ◽  
Vol 44 (1) ◽  
pp. 53-59 ◽  
Author(s):  
B.H. Blanchett ◽  
T.L. Grey ◽  
E.P. Prostko ◽  
W.K. Vencill ◽  
T.M. Webster

ABSTRACT The development of 2,4-D-resistant cotton and soybean cultivars has created great concern about the potential off-target movement of 2,4-D onto sensitive broadleaf crops. Peanut is often grown in close proximity to cotton and soybean. Therefore, field studies were conducted during 2012 and 2013 at Plains, Ty Ty, and Attapulgus, GA to evaluate peanut response to 2,4-D at 67, 133, 266, 533, and 1066 g ae ha−1 applied at preemergence (PRE), 10, 20, or 30 d after planting (DAP), corresponding to PRE, V2, V3, and V5 peanut growth stages. Nontreated controls (NTC) were included for comparison. Treatment timing by rate interactions were significant (P < 0.0001). As 2,4-D rate increased peanut injury increased. There was variation in yield loss response dependent on peanut growth stage at application timing. Peanut that was treated preemergence and at the V2 growth stage did not have yield loss at any of the 2,4-D evaluated rates (67 to 1066 g ha−1) relative to the NTC. When peanut was treated at V3 and V5 growth stages with 2,4-D, injury estimates were 5 to 32% from the 67 to 1066 g ha−1 rates respectively, and peanut canopy diameter was stunted 5 to 35% at the same rates. The resulting peanut yield loss was 23 and 36% from 533 and 1066 g ha−1 of 2,4-D applied at V3 and V5 growth stages; in part due to reproductive growth being initiated during that time-frame and peanut had less time to recuperate before harvest. Linear regression models were used to evaluate peanut injury and peanut yield results. Significant correlations were established for V3 and V5 treatments between injury and yield, injury and canopy diameter, and canopy diameter and yield (P < 0.0001), with correlation coefficients of − 0.48, − 0.76, and 0.51, respectively. Growers and extension agents will be able to use these peanut injury estimates and canopy diameter data to make improved predictions of potential peanut yield loss where off-target movement of 2,4-D or sprayer contamination has occurred.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


Sign in / Sign up

Export Citation Format

Share Document