Flumioxazin soil persistence under plastic mulch and effects of pretransplant applications on strawberry

2020 ◽  
pp. 1-5
Author(s):  
Nathan S. Boyd ◽  
Shaun M. Sharpe ◽  
Ramdas Kanissery

Abstract Weeds are managed in Florida strawberry production systems with plastic mulches, fumigants, and herbicides. There are limited post-transplant options to control weeds that emerge in the planting holes in the plastic-covered beds, but flumioxazin at 107 g ai ha−1 can be applied pretransplant under the plastic mulch to control broadleaf and grass weeds. Three research trials were conducted in Balm and Dover, FL, in 2017 and 2018 to evaluate tolerance of the strawberry cultivar ‘Radiance’ to flumioxazin rates ranging from 54 to 6,854 g ha−1 and to estimate herbicide persistence under the plastic mulch. Shoot damage was observed at 428 to 857 g ha−1 (4× and 8× the label rate, respectively), but a significant increase in the number of dead plants was not observed until the treatment rate was 857 g ha−1 at one site and 3,427 g ha−1 at a second site (8× and 32× the label rate, respectively). Berry yields were unaffected by rates lower than 857 g ha−1. Flumioxazin persisted throughout the growing season (approximately 150 d) with no reduction in soil concentration. We conclude that applied at the label rate, flumioxazin is a safe pretransplant weed management option for season-long weed control in strawberry with no yield reduction at rates below 8× the label rate. Caution is recommended for growers who plant a second crop on the same bed.

Author(s):  
Greta G. Gramig ◽  
Samantha K. Hogstad ◽  
Patrick M. Carr

Abstract During 2015 and 2016, studies were conducted at Absaraka and Dickinson, North Dakota to evaluate the impacts of hemp (applied at 1156 m3 ha−1) and commercial paper mulch, as well as soil-applied biochar (applied at 11.25 m3 ha−1), on weed suppression and strawberry growth during the establishment year, and on weed suppression and strawberry yield during the production year, in a matted row production (MRP) system. During 2015, biochar influenced dry weed biomass only within the hemp mulch, with slightly more weed biomass associated with biochar application compared to zero biochar (3.1 vs 0.4 g m−2), suggesting that biochar may have increased weed germination and/or emergence from beneath hemp mulch. Biochar application also slightly increased soil pH, from 6.9 in non-amended soil to 7.0 in amended soil. Strawberry runner number during 2015 was greater in association with hemp or paper mulch compared to zero mulch (4.5 and 4.9 vs 2.4 runners plant −1, respectively). This result mirrored a similar differential in per berry mass across sites (7.6 and 7.4 vs 6.2 g berry −1 for hemp mulch, paper mulch and zero mulch, respectively). These results may be related to hemp and paper mulch reducing maximum soil temperatures during summer 2015. During the establishment year, both hemp and paper mulch suppressed weeds well compared to zero mulch, although at Absaraka hemp mulch provided slightly better weed suppression than paper mulch. During the production year, both mulches continued to suppress weeds compared to zero mulch at Dickinson. However, at Absaraka, only hemp mulch provided weed suppression compared to zero mulch, possibly because of faster paper degradation caused by greater numbers of large precipitation events and greater relative humidity at Absaraka compared to Dickinson. Weeds were removed from plots during 2015 to allow separation of weed suppression from other possible mulch impacts; therefore, yield data do not reveal striking differences among mulch treatments. Because previous research has demonstrated the impact of weed management during the establishment of strawberries in a matted row system, we concluded that hemp mulch may provide more durable weed suppression compared to paper mulch, which would increase strawberry yield protection in an MRP system. Material cost may be an issue for implementing hemp mulch, as hemp hurd cost was 25 times paper mulch at the application rates used in this study. However, hemp mulch could still be a beneficial option, especially for organic strawberry growers desiring a renewable and environmentally sound replacement for plastic mulch who are able to find affordable local sources of this material.


2018 ◽  
Vol 33 (1) ◽  
pp. 142-146
Author(s):  
Nathan S. Boyd ◽  
Arnold Schumann

AbstractPreemergence herbicides are typically applied by broadcasting to the top of raised beds before laying the plastic mulch in plasticulture production systems. Broadleaf and grass emergence is limited to transplant holes in the mulch. As a result, most herbicides are applied under the mulch in locations where weeds cannot emerge and herbicides are unnecessary. To reduce this excessive off-target application, a precision hole-punch sprayer was developed at the University of Florida for use in plasticulture production systems. The technology facilitates the application of herbicides during the hole-punch operation immediately before transplant. Application of napropamide andS-metolachlor in an application volume of 233 L ha−1of water using the precision hole-punch applicator had no effect on tomato and bell pepper growth and yield. Equipment accuracy ranged from 55% to 90%. Preemergence herbicide use was reduced by 88% to 92% with no reduction in weed control. The hole-punch applicator is an effective way to reduce PRE herbicide use in transplant vegetables grown using the plasticulture production system.


2020 ◽  
Vol 34 (6) ◽  
pp. 888-896
Author(s):  
O. Adewale Osipitan ◽  
Bahar Yildiz-Kutman ◽  
Seth Watkins ◽  
Patrick H. Brown ◽  
Bradley D. Hanson

AbstractGlyphosate is an important component of herbicide programs in orchard crops in California. It can be applied alone or in tank-mix combinations under the crop rows or to the entire field and often is used multiple times each year. There has been speculation about the potential impacts of repeated use of glyphosate in perennial crop systems, because of uptake from shallow root systems or indirectly because of effects on nutrient availability in soil. To address these concerns, research was conducted from 2013 to 2020 on key orchard crops to evaluate tree response to glyphosate regimens. Almond, cherry, and prune were evaluated in separate experiments. In each crop, the experimental design was a factorial arrangement of two soil types, four glyphosate rates (0, 1.1, 2.2, and 4.4 kg ae ha−1, applied three times annually), and two post-glyphosate application irrigation treatments. In the first 2 yr of the study, there was no clear impact of the glyphosate regimens on shikimate accumulation or leaf chlorophyll content, which suggested no direct effect on the crop. In the seventh year of the study, after six consecutive years of glyphosate application to the orchard floors, there were no negative impacts of glyphosate application on leaf nutrient concentration or on cumulative trunk growth in any of the three orchard crops. Lack of a negative growth impact even at the highest treatment rate, which included 18 applications of glyphosate totaling nearly 80 kg ae ha−1 glyphosate over the course of the experiment suggest there is not likely a significant risk to tree health of judicious use of the herbicide in these production systems. Given the economic importance of orchard crops in California, and grower and industry concerns about pesticides generally and specifically about glyphosate, these findings are timely contributions to weed management concerns in perennial specialty crops.


2006 ◽  
Vol 7 (1) ◽  
pp. 11 ◽  
Author(s):  
P. D. Millner ◽  
Henry A. Wallace

Black root rot (BRR) can severely limit productivity in perennial, matted-row strawberry systems. In annual production systems, fumigation temporarily controls soilborne diseases. This report describes for the first time a novel, raised-bed growing method that uses 100% mature compost as an alternative to fumigation. Compost is pneumatically blown into flexible mesh tubes (“compost socks”) that lie directly on top of nonfumigated BRR-infested soil. Root health, plant growth, and yield of two cultivars, Chandler and Allstar, were evaluated after growth in compost socks, matted rows, and black plastic mulch at three locations in Maryland. Effects of a pre-plant soil drench with 20% vinegar were also examined. Results show that BRR symptoms were significantly reduced in all compost sock treatments, with or without vinegar, and that yields increased 16 to 32-times those observed in black plastic mulch or matted rows. In general, growth and yield of ‘Chandler’ surpassed that of ‘Allstar’ regardless of pre-plant vinegar and compost treatments. Vinegar alone was ineffective in preventing significant plant disease. Cotton-mesh compost socks readily decompose in soil eliminating the need for plastic removal. The compost sock system requires minimal equipment/supplies for startup, no fumigants, and is compatible with standard methods of weed management used in strawberry fields. Accepted for publication 2 June 2006. Published 16 October 2006.


2013 ◽  
Vol 30 (2) ◽  
pp. 143-153 ◽  
Author(s):  
Jessica R. Goldberger ◽  
Robert Emmet Jones ◽  
Carol A. Miles ◽  
Russell W. Wallace ◽  
Debra A. Inglis

AbstractCommercial farmers have been using polyethylene plastic mulch since the 1950s. Despite the affordability and effectiveness of polyethylene mulch, the disposal process is financially and environmentally costly. Biodegradable plastic mulches, an ecologically sustainable alternative to polyethylene mulch films, were introduced in the 1980s. Biodegradable plastic mulches can be tilled into the soil or composted at the end of the season, reducing the labor and environmental costs associated with plastic removal and disposal. However, research results are mixed as to the effectiveness, degradability and ease-of-use of biodegradable plastic mulches. In 2008–2012, researchers, funded by a USDA Specialty Crop Research Initiative grant, conducted surveys and focus groups in three different agricultural regions of the USA to better understand the barriers and bridges to the adoption of biodegradable plastic mulches for specialty crop production systems. Data on the experiences and views of specialty crop growers, agricultural extension agents, agricultural input suppliers, mulch manufacturers and other stakeholders showed that the major adoption barriers were insufficient knowledge, high cost and unpredictable breakdown. The major bridges to adoption were reduced waste, environmental benefits and interest in further learning. These findings are discussed with reference to the classic innovation diffusion model, specifically work on the innovation–decision process and the attributes of innovations. The study results can be used to guide the activities of those involved in the design, development and promotion of biodegradable plastic mulches for US specialty crop production systems.


Weed Science ◽  
2019 ◽  
pp. 1-21 ◽  
Author(s):  
Sudheesh Manalil ◽  
Hafiz Haider Ali ◽  
Bhagirath Singh Chauhan

Abstract Annual sowthistle (Sonchus oleraceus L.) is a broadleaf weed that is increasing in prevalence in the northern cropping regions of Australia. Being a member of Asteraceae family, this weed possesses many biological attributes needed to thrive in varying environments and weed management pressure. Interference of this weed was examined in a wheat (Triticum aestivum L.) crop through field studies in 2016 and 2017. Different densities of S. oleraceus were evaluated for their potential to cause yield loss in wheat: 0.0 (weed free), low (9 to 15 plants m−2), medium (29 to 38 plants m−2), and high (62 to 63 plants m−2). Based on the exponential decay model, 43 and 52 plants m−2 caused a yield reduction of 50% in 2016 and 2017, respectively. Yield components such as panicles m−2 and grains per panicles were affected by weed density. At the high weed infestation level, S. oleraceus produced a maximum of 182,940 and 192,657 seeds m−2 in 2016 and 2017, respectively. Sonchus oleraceus exhibited poor seed retention at harvest as more than 95% of seeds were blown away by wind. Adverse effects on crop, high seed production and wind-blown dispersal may lead to an increased prevalence of this weed in the absence of an integrated weed management strategy utilizing both herbicides and non-chemical options.


2001 ◽  
Vol 30 (5) ◽  
pp. 1808-1821 ◽  
Author(s):  
Pamela J. Rice ◽  
Laura L. McConnell ◽  
Lynne P. Heighton ◽  
Ali M. Sadeghi ◽  
Allan R. Isensee ◽  
...  

HortScience ◽  
2022 ◽  
Vol 57 (2) ◽  
pp. 215-220
Author(s):  
Ravneet K. Sandhu ◽  
Laura E. Reuss ◽  
Nathan S. Boyd

Sulfentrazone was recently registered for use in tomato and strawberry in Florida. Field experiments were conducted at the Gulf Coast Research and Education Center in Wimauma, FL, to evaluate PRE sulfentrazone applications when applied on flat soil 30 days before bed formation (PRE-f), on the bed top immediately before laying plastic mulch (PRE-t), applied PRE-t as a tank mix with other PRE herbicides, or PRE-t followed by POST halosulfuron or rimusulfuron (POST). Sulfentrazone did not damage the tomato and strawberry crop and had no effect on strawberry and tomato fruit yield. It was as effective as the industry standards but none of the evaluated herbicide treatments provided adequate weed control. POST halosulfuron in tomato resulted in significantly greater nutsedge control at 11 (14%) and 13 (27%) weeks after initial treatment (WAIT) compared with other treatments in Fall 2019 and Spring 2020, respectively. However, in tomato, tank-mixing sulfentrazone with S-metolachlor or metribuzin did not enhance nutsedge control. Weed control did not improve with increased rates or with the use of PRE-f followed by (fb) PRE-t applications in tomato. PRE-t sulfentrazone fb POST halosulfuron was an efficient nutsedge management option in tomato. Sulfentrazone alone did not effectively control weeds in tomato or strawberry. Increased rates of sulfentrazone with the use of PRE-f fb PRE-t sulfentrazone applications did reduce (34%) total weed density in strawberry.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


2021 ◽  
Vol 32 (5) ◽  
pp. 203-207
Author(s):  
M. Alejandro Garcia ◽  
Lucia V. Meneses ◽  
Tiago Edu Kaspary

Uruguayan agriculture has undergone dramatic changes in the last 50 years driven by the adoption of new agricultural production systems that incorporate zero tillage and herbicide resistant crops. This has resulted in a shift in weed species frequencies and the dispersion of introduced herbicide resistant weed populations. Finally, integrated weed management tools are being developed by research and extension services to manage herbicide-resistant (HR) weeds better and to reduce environmental impact of herbicides.


Sign in / Sign up

Export Citation Format

Share Document