Weed control and crop tolerance with S-metolachlor in seeded summer squash and cucumber

2020 ◽  
Vol 34 (6) ◽  
pp. 849-856
Author(s):  
Thierry E. Besançon ◽  
Maggie H. Wasacz ◽  
Baylee L. Carr

AbstractResidual herbicides remain the primary tool for efficient weed control in cucurbit crops because of the lack of crop tolerance to many POST herbicide options. Field experiments were conducted in New Jersey in 2018 and 2019 to determine weed control efficacy and tolerance of direct-seeded cucumber ‘Python’ and summer squash ‘Gold Prize’ to S-metolachlor applied at 0.7 or 1.4 kg ai ha−1 at planting (PRE) or when crops reached the second- to third-leaf stage (EPOST). Regardless of applied rate, S-metolachlor PRE or EPOST provided 96% to 100% control 3 wk after planting (WAP) of smooth pigweed, large crabgrass, and giant foxtail. S-metolachlor PRE significantly improved American black nightshade and carpetweed control 3 WAP with respect to bensulide, and smooth pigweed with respect to clomazone + ethalfluralin. Summer squash showed excellent tolerance, regardless of S-metolachlor rate or timing of application, with stunting not exceeding 17% 4 WAP and 3% 7 WAP at the 1.4 kg ha−1 rate. Marketable yield decreased by 15% with S-metolachlor PRE or POST at 1.4 kg ha−1 with respect to clomazone + ethalfluralin, a reduction not noted when comparing with bensulide or the handweeded control. Marketable fruit number plant−1 and individual fruit weight were not affected by S-metolachlor applications. Conversely, cucumber was more sensitive to S-metolachlor than summer squash was with 30% seedling emergence reduction and 36% to 43% stunting 4 WAP when S-metolachlor was applied PRE at 1.4 kg ha−1. EPOST application resulted in 15% to 26% cucumber injury 1 wk after treatment. Marketable yield declined by 21% and 39% with the 0.7 and 1.4 kg ha−1 rates of S-metolachlor, respectively, compared with clomazone + ethalfluralin. Therefore, S-metolachlor may be a novel alternative to already labeled residual herbicides for summer squash, but unacceptable injury and yield reduction do not support its registration on cucumber.

2017 ◽  
Vol 31 (2) ◽  
pp. 279-290 ◽  
Author(s):  
Chad M. Herrmann ◽  
Margaret A. Goll ◽  
Colin J. Phillippo ◽  
Bernard H. Zandstra

Field experiments were conducted in 2008 and 2010 to determine crop tolerance and weed control efficacy of the POST herbicides bentazon, flumioxazin, and oxyfluorfen applied to direct-seeded dry bulb onions on organic soil. Postemergence application of oxyfluorfen at 0.071 kg ai ha−1resulted in less than 20% onion injury when applied at the 2 and 4 onion leaf stages and provided good control of ladysthumb and common lambsquarters. Oxyfluorfen EC caused slightly higher visual injury than oxyfluorfen SC, but there was no difference in onion yield among the treatments. Application of flumioxazin at 0.036 of 0.072 kg ai ha−1alone or in combination with pendimethalin ACS resulted in minimal onion injury and no yield reduction. Combining flumioxazin in a tank mix with pendimethalin EC, dimethenamid-P EC, orS-metolachlor EC resulted in significant onion injury and yield reduction. Flumioxazin plusS-metolachlor, dimethenamid-P, or pendimethalin improved ladysthumb control in one of two years. Bentazon applied at 0.56 kg ai ha−1produced moderate onion injury and did not control yellow nutsedge adequately. Bentazon applied at 1.12 kg ai ha−1provided good control of yellow nutsedge but caused serious onion injury and yield loss.


1989 ◽  
Vol 3 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Edward S. Hagood

Field experiments were established to evaluate preemergence and postemergence herbicides for control of triazine-resistant smooth pigweed and common lambsquarters in no-till corn. When applied preemergence, alachlor in the microencapsulated formulation controlled smooth pigweed better than the emulsifiable concentrate formulation and better than either metolachlor or pendimethalin. These herbicides applied preemergence did not control common lambsquarters consistently. Pendimethalin controlled both triazine-resistant species when applied as a sequential treatment of a preemergence and an early postemergence application. Control of triazine-resistant smooth pigweed and common lambsquarters was excellent when dicamba was applied early postemergence in treatments containing alachlor, metolachlor, or pendimethalin applied preemergence and/or early postemergence. Thiameturon and CGA-131036 controlled triazine-resistant smooth pigweed with acceptable crop tolerance. Thiameturon also controlled common lambsquarters, but control was unacceptable with CGA-131036.


Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 233-238 ◽  
Author(s):  
J. Anthony Mills ◽  
William W. Witt

Field experiments were conducted to evaluate the interactions of tillage systems with imazaquin and imazethapyr on weed control and soybean injury and yield. Control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail from imazaquin and imazethapyr in conventional tillage was generally equal to or greater than control in no-tillage. However, under limited rainfall, weed control in no-tillage was generally equal to or greater than control in conventional tillage. Reductions in soybean heights due to herbicide treatment were evident in both tillage systems in 1985 and 1986 but not in. Soybean yields were reduced in 1985 from imazaquin at 140, 210, and 250 g/ha and imazethapyr at 105 and 140 g/ha. Yields were not reduced in 1986 and. Imazaquin and imazethapyr appear to provide adequate control of jimsonweed, common cocklebur, ivyleaf morningglory, velvetleaf, and giant foxtail in conventional and no-till systems.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 1002-1009 ◽  
Author(s):  
Dunk Porterfield ◽  
John W. Wilcut ◽  
Jerry W. Wells ◽  
Scott B. Clewis

Field studies conducted at three locations in North Carolina in 1998 and 1999 evaluated crop tolerance, weed control, and yield with CGA-362622 alone and in combination with various weed management systems in transgenic and nontransgenic cotton systems. The herbicide systems used bromoxynil, CGA-362622, glyphosate, and pyrithiobac applied alone early postemergence (EPOST) or mixtures of CGA-362622 plus bromoxynil, glyphosate, or pyrithiobac applied EPOST. Trifluralin preplant incorporated followed by (fb) fluometuron preemergence (PRE) alone or fb a late POST–directed (LAYBY) treatment of prometryn plus MSMA controlled all the weed species present less than 90%. Herbicide systems that included soil-applied and LAYBY herbicides plus glyphosate EPOST or mixtures of CGA-362622 EPOST plus bromoxynil, glyphosate, or pyrithiobac controlled broadleaf signalgrass, entireleaf morningglory, large crabgrass, Palmer amaranth, prickly sida, sicklepod, and smooth pigweed at least 90%. Only cotton treated with these herbicide systems yielded equivalent to the weed-free check for each cultivar. Bromoxynil systems did not control Palmer amaranth and sicklepod, pyrithiobac systems did not control sicklepod, and CGA-362622 systems did not control prickly sida.


2015 ◽  
Vol 95 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Amit J. Jhala ◽  
Mayank S. Malik ◽  
John B. Willis

Jhala, A. J., Malik, M. S. and Willis, J. B. 2015. Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean. Can. J. Plant Sci. 95: 973–981. Acetochlor, an acetamide herbicide, has been used for many years for weed control in several crops, including soybean. Micro-encapsulated acetochlor has been recently registered for preplant (PP), pre-emergence (PRE), and post-emergence (POST) application in soybean in the United States. Information is not available regarding the sequential application of acetochlor for weed control and soybean tolerance. The objectives of this research were to determine the effect of application timing of micro-encapsulated acetochlor applied in tank-mixture with glyphosate in single or sequential applications for weed control in glyphosate-resistant soybean, and to determine its impact on soybean injury and yields. Field experiments were conducted at Clay Center, Nebraska, in 2012 and 2013, and at Waverly, Nebraska, in 2013. Acetochlor tank-mixed with glyphosate applied alone PP, PRE, or tank-mixed with flumioxazin, fomesafen, or sulfentrazone plus chlorimuron provided 99% control of common waterhemp, green foxtail, and velvetleaf at 15 d after planting (DAP); however, control declined to ≤40% at 100 DAP. Acetochlor tank-mixed with glyphosate applied PRE followed by early POST (V2 to V3 stage of soybean) or late POST (V4 to V5 stage) resulted in ≥90% control of common waterhemp and green foxtail, reduced weed density to ≤2 plants m−2 and biomass to ≤12 g m−2, and resulted in soybean yields >3775 kg ha−1. The sequential applications of glyphosate plus acetochlor applied PP followed by early POST or late POST resulted in equivalent weed control to the best herbicide combinations included in this study and soybean yield equivalent to the weed free control. Injury to soybean was <10% in each of the treatments evaluated. Micro-encapsulated acetochlor can be a good option for soybean growers for controlling grasses and small-seeded broadleaf weeds if applied in a PRE followed by POST herbicide program in tank-mixture with herbicides of other modes of action.


HortScience ◽  
2016 ◽  
Vol 51 (12) ◽  
pp. 1524-1528 ◽  
Author(s):  
Megan E. O’Rourke ◽  
Jessica Petersen

Conservation tillage has the potential to decrease the environmental footprint of pumpkin production, but possible trade-offs with yield are not well understood. This study experimentally tested the effects of three cultivation techniques (conventional-till, strip-till, and no-till) on pumpkin production, weed pressure, soil moisture, and soil erosion. Randomized complete block field experiments were conducted on Cucurbita pepo L. ‘Gladiator’ pumpkins in 2014 and 2015. Overall yields were higher in 2015, averaging 45.2 t·ha−1, compared with 37.4 t·ha−1 in 2014. In 2014, pumpkin yields were similar across tillage treatments. In 2015, the average fruit weight of no-till pumpkins was significantly greater than strip-till and conventional-till pumpkins, which corresponded to a marginally significant 13% and 22% yield increase, respectively (P = 0.11). Weed control was variable between years, especially in the strip-till treatment. Soil moisture was consistently highest in the no-till treatment in both years of study. Conventional-till pumpkin plots lost ≈9 times more soil than the two conservation tilled treatments during simulated storm events. The 2015 yield advantage of no-till pumpkins seems related to both high soil moisture retention and weed control. Research results suggest that no-till and strip-till pumpkin production systems yield at least as well as conventional-till systems with the advantage of reducing soil erosion during extreme rains.


2008 ◽  
Vol 22 (4) ◽  
pp. 660-665 ◽  
Author(s):  
Brian W. Trader ◽  
Henry P. Wilson ◽  
Thomas E. Hines

Field experiments were conducted in 1999, 2000, and 2001 to investigate PRE and POST applications of halosulfuron-methyl in combination with clomazone plus ethalfluralin for control of sedge and smooth pigweed in summer squash. Halosulfuron was applied PRE or POST to summer squash at 9, 18, or 27 g ai/ha in combination with a PRE application of clomazone at 175 g ai/ha plus ethalfluralin at 630 g ai/ha. Smooth pigweed control by addition of halosulfuron at 18 and 27 g/ha in combination with clomazone plus ethalfluralin PRE was greater than 89% independent of application method. Yellow nutsedge control was greater than 83% with POST applications of halosulfuron at 18 and 27 g/ha in combination with clomazone plus ethalfluralin PRE. Yellow nutsedge control was greater than 60% from all POST halosulfuron applications at 9, 18, or 27 g/ha in the greenhouse. In a separate field study without ethalfluralin PRE, rice flatsedge control was more than 85% from halosulfuron applied POST at 18 and 27 g/ha. Yellow summer squash and zucchini squash were injured as much as 52 and 47%, respectively, from inclusion of halosulfuron PRE or POST at 27 g/ha in treatments. Summer squash yields were generally not affected by halosulfuron rate, and were comparable to or higher than summer squash treated by only the mixture of clomazone plus ethalfluralin. In these studies, summer squash were injured by halosulfuron applied at 9 to 27 g/ha PRE or POST, yet rapidly recovered, making this herbicide acceptable for use in combination with clomazone and ethalfluralin for controlling several common weed species.


2014 ◽  
Vol 28 (2) ◽  
pp. 298-306 ◽  
Author(s):  
Kris J. Mahoney ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Eleven field experiments were conducted over a 3-yr period (2010, 2011, and 2012) in conventional- and no-till soybean with a flumioxazin and pyroxasulfone premix. PRE and preplant applications were evaluated for soybean injury, weed control, and yield compared to standard herbicides. Early-season soybean injury from flumioxazin/pyroxasulfone ranged from 1 to 19%; however, by harvest, soybean yields were similar across labeled rates (160 and 200 g ai ha−1), standard treatments, and the nontreated control. Flumioxazin/pyroxasulfone provided excellent control (99 to 100%) of velvetleaf, pigweed species (redroot pigweed and smooth pigweed), and common lambsquarters across almost all rates tested (80 to 480 g ai ha−1). Common ragweed, green foxtail, and giant foxtail control increased with flumioxazin/pyroxasulfone rate. The biologically effective rates varied between tillage systems. The flumioxazin/pyroxasulfone rate required to provide 80% control (R80) of pigweed was 3 and 273 g ai ha−1under conventional- and no-till, respectively. For common ragweed, the R80was 158 g ai ha−1under conventional tillage; yet, under no-till, the rate was nonestimable. The results indicate that flumioxazin/pyroxasulfone can provide effective weed control as a setup for subsequent herbicide applications.


1993 ◽  
Vol 120 (2) ◽  
pp. 187-196 ◽  
Author(s):  
A. P. Everaarts

SUMMARYIn two field experiments in Suriname, competition between weeds and sorghum (Sorghum bicolor(L.) Moench) was studied in the rainy seasons of 1982 and 1983. The crop was kept either weed-free or without weed control for each of six different periods of time from planting. Observations made at the end of each period allowed an analysis to be made of the growth and development of a crop with and without weed control.Due to the crop canopy structure and fertilizer placement near the row, weed growth was concentrated in the rows. Starting atc.20–30 days after planting, competition with weeds reduced ground-cover and leaf area index of the crop. Competition reduced growth rates, leading to lower yields. Plant population density was not affected, but competition reduced the number of leaves present. Stem length initially increased with competition in one season, but was retarded in another. Competition for nutrients was strong and was found as early as 15 days after planting. Nitrogen was the element most competed for initially. Competition for water occurred, but competition for light seemed unlikely. About 20 weed-free days after planting were necessary to avoid yield losses and around 30 weed-free days to attain negligible weed growth at harvest. Yield reduction was mainly due to a decrease in number of grains per panicle. Competition during floret establishment (c.30–40 days after planting) should be avoided.


1993 ◽  
Vol 7 (2) ◽  
pp. 443-451 ◽  
Author(s):  
George Kapusta ◽  
Ronald F. Krausz

Field experiments were conducted from 1979 to 1989 to determine the influence of conventional, reduced, and no-tillage systems and different herbicide combinations on weed species and population, weed control, and soybean injury, population, and yield. In no-till (NT) non-treated plots, there was an abrupt shift from horseweed as the dominant early spring emerging weed to gray goldenrod in 1985. Following its initial observation, gray goldenrod became the dominant species within 2 yr, with giant foxtail as the only other species observed in these plots. Giant foxtail was the dominant weed species from 1980 to 1989 in conventional till (CT) and reduced-till (RT) plots. There also was a shift in the frequency of occurrence and in density of several broadleaf weed species during the 11-yr study. Most herbicides provided excellent control of all weeds in all tillage systems, especially those that included POST herbicides. There was little difference between glyphosate and paraquat in controlling weeds present at the time of planting in NT. PRE herbicides caused 2 to 9% soybean injury with slightly greater injury occurring in CT and RT than in NT. The POST broadleaf herbicides did not significantly increase soybean injury. There were no differences in soybean population or yield among the herbicide treatments regardless of tillage. There also was no difference in soybean population or yield in NT compared with CT when averaged over all herbicide treatments.


Sign in / Sign up

Export Citation Format

Share Document