The influence of soybean population and POST herbicide application timing on in-season and subsequent-season Palmer amaranth (Amaranthus palmeri) control and economic returns

2020 ◽  
pp. 1-7
Author(s):  
Denis J. Mahoney ◽  
David L. Jordan ◽  
Andrew T. Hare ◽  
Nilda Roma-Burgos ◽  
Katherine M. Jennings ◽  
...  

Abstract Overreliance on herbicides for weed control has led to the evolution of herbicide-resistant Palmer amaranth populations. Farm managers should consider the long-term consequences of their short-term management decisions, especially when considering the soil weed seedbank. The objectives of this research were to (1) determine how soybean population and POST herbicide application timing affects in-season Palmer amaranth control and soybean yield, and (2) how those variables influence Palmer amaranth densities and cotton yields the following season. Soybeans were planted (19-cm row spacing) at a low-, medium-, and high-density population (268,000, 546,000, and 778,000 plants ha–1, respectively). Fomesafen and clethodim (280 and 210 g ai ha–1, respectively) were applied at the VE, V1, or V2 to V3 soybean growth stage. Nontreated plots were also included to assess the effect of soybean population alone. The following season, cotton was planted into these plots so as to understand the effects of soybean planting population on Palmer amaranth densities in the subsequent crop. When an herbicide application occurred at the V1 or V2 to V3 soybean stage, weed control in the high-density soybean population increased 17% to 23% compared to the low-density population. Economic return was not influenced by soybean population and was increased 72% to 94% with herbicide application compared to no treatment. In the subsequent cotton crop, Palmer amaranth densities were 24% to 39% lower 3 wk after planting when following soybean sprayed with herbicides compared to soybean without herbicides. Additionally, Palmer amaranth densities in cotton were 19% lower when soybean was treated at the VE stage compared to later stages. Thus, increasing soybean population can improve Palmer amaranth control without adversely affecting economic returns and can reduce future weed densities. Reducing the weed seedbank and selection pressure from herbicides are critical in mitigating resistance evolution.

2006 ◽  
Vol 20 (3) ◽  
pp. 551-557 ◽  
Author(s):  
Timothy L. Grey ◽  
Paul L. Raymer ◽  
David C. Bridges

Field studies were conducted to evaluate weed control in herbicide-resistant canola in Georgia. The resistant canola cultivars and respective herbicides were ‘Pioneer 45A76’ and imazamox, ‘Hyola 357RR’ and glyphosate, and ‘2573 Invigor’ and glufosinate. Weed seed of Italian ryegrass and wild radish were sown simultaneously in October with canola and control of these species was evaluated along with other naturally occurring weeds. Herbicide treatments for the respective herbicide-resistant canola cultivar were imazamox at 0.035 and 0.071 kg ai/ha, glyphosate at 0.84 and 1.64 kg ae/ha, and glufosinate at 0.5 and 1.0 kg ai/ha. Herbicides were applied at one– two-leaf (LF) and three–four-LF canola stages. There was no significant injury to any canola cultivar as a result of herbicide rate or timing of application. By midseason (February), imazamox effectively controlled wild radish, henbit, and shepherd's-purse at both rates and at both timings. When applied to three–four-LF canola, the higher rates of glyphosate and glufosinate were required to provide 75% or greater control of Italian ryegrass, wild garlic, and henbit. Glufosinate did not adequately control wild radish at either rate or application timing. Greenhouse experiments provided similar results.


Weed Science ◽  
2011 ◽  
Vol 59 (3) ◽  
pp. 390-397 ◽  
Author(s):  
Ivan Sartorato ◽  
Antonio Berti ◽  
Giuseppe Zanin ◽  
Claudio M. Dunan

The introduction of herbicide-resistant crops and postemergence herbicides with a wide action spectrum shifted the research focus from how to when crops should be treated. To maximize net return of herbicide applications, the evolution of weed–crop competition over time must be considered and its effects quantified. A model for predicting the yield trend in relation to weed removal time, considering emergence dynamics and density, was tested on data from glyphosate-resistant soybean grown in cropping systems in Italy and Argentina. Despite an ample variation of weed emergence dynamics and weed load in the four trials, the model satisfactorily predicted yield loss evolution. The estimated optimum time for weed control (OTWC) varied from about 18 d after soybean emergence in Argentina to 20 to 23 d in Italy, with time windows for spraying ranging from 14 to 28 d. Within these limits a single glyphosate application ensures good weed control at low cost and avoids side effects like the more probable unfavorable weed flora evolution with double applications and the presence of residues in grains. Despite the apparent simplicity of weed control based on nonselective herbicides, the study outlines that many variables have to be considered to optimize weed management, particularly for the time evolution of the infestation and, subsequently, a proper timing of herbicide application.


2012 ◽  
Vol 26 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Laura E. Lindsey ◽  
Wesley J. Everman ◽  
Andrew J. Chomas ◽  
James J. Kells

Field studies were conducted from 2007 to 2009 in East Lansing, MI to evaluate three residual herbicide programs, three POST herbicide application timings, and two POST herbicides in glyphosate- and glufosinate-resistant corn. Herbicide programs included a residual PRE-applied herbicide followed by (fb) POST application (residual fb POST), a residual herbicide tank-mixed with a POST herbicide (residual + POST), and a nonresidual POST. Three POST herbicide application timings included early POST (EP), mid-POST (MP), and late POST (LP) at an average corn growth stage of V3/V4, V4/V5, and V5/V6, respectively. The two POST herbicides evaluated were glyphosate and glufosinate. Control of common lambsquarters and giant foxtail was evaluated 28 d after the LP application. Glyphosate often provided greater weed control than glufosinate. The LP application resulted in greater giant foxtail control compared with the EP application timing, which may be attributed to control of late-emerging weeds. The EP application timing improved common lambsquarters control compared with the LP application timing. The residual + POST program resulted in greater weed control compared with the residual fb POST program in all years. The effect of residual herbicide program, POST herbicide, and POST application timing on corn grain yield varied by year. In 2007, the use of glyphosate resulted in higher grain yield compared with glufosinate. In 2008, corn grain yield was the highest in the PRE fb POST program and with POST applications at EP and MP. To provide the most consistent weed control and minimize the likelihood of grain yield reductions, a PRE fb POST program applied at EP or MP is recommended.


2017 ◽  
Vol 44 (2) ◽  
pp. 93-99 ◽  
Author(s):  
O.W. Carter ◽  
E.P. Prostko ◽  
J.W. Davis

ABSTRACT The increase in herbicide-resistant weeds over the past decade has led to the introduction of crops that are resistant to auxin herbicides. Strict application procedures are required for the use of auxin herbicides in auxin-resistant crops to minimize off-target movement. One requirement for application is the use of nozzles that will minimize drift by producing coarse droplets. Generally, an increase in droplet size can lead to a reduction in coverage and efficacy depending upon the herbicide and weed species. In studies conducted in 2015 and 2016, two of the potential required auxin nozzle types [(AIXR11002 (coarse) and TTI11002 (ultra-coarse)] were compared to a conventional flat-fan drift guard nozzles [DG11002 (medium)] for weed control in peanut herbicide systems. Nozzle type did not influence annual grass or Palmer amaranth control in non-crop tests. Results from in-crop tests indicated that annual grass control was 5% to 6% lower when herbicides were applied with the TTI nozzle when compared to the AIXR or DG nozzles. However, Palmer amaranth control and peanut yield was not influenced by coarse-droplet nozzles. Peanut growers using the coarse-droplet nozzles need to be aware of potential reduced grass control.


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 649-654 ◽  
Author(s):  
Stephen B. Powles ◽  
Todd A. Gaines

An overreliance on herbicides in several important grain- and cotton-producing regions of the world has led to the widespread evolution of herbicide-resistant weed populations. Of particular concern are weed populations that exhibit simultaneous resistance to multiple herbicides (MHR). Too often, herbicides are the only tool used for weed control. We use the term herbicide-only syndrome (HOS) for this quasi-addiction to herbicides. Growers and their advisers focus on herbicide technology, unaware of or ignoring basic evolutionary principles or the necessary diversity provided by other methods of weed control. Diversity in weed control practices disrupts resistance evolution. Significant challenges exist to implementing diversity, including how to address information so that producers choose to alter existing behaviors (HOS) and take calculated risks by attempting new and more complex strategies. Herbicide resistance management in the long term will require creativity in many sectors, including roles for growers, industry, researchers, consultants, retailers, and regulators. There can be creativity in herbicide registration and regulation, as exemplified by the recent U.S. Environmental Protection Agency program that encourages herbicide registrants to register products in minor crops. We propose one idea for a regulatory incentive to enable herbicide registrants in jurisdictions such as the United States to receive an extended data exclusivity period in exchange for not developing one new herbicide in multiple crops used together in rotation, or for implementing stewardship practices such as robust mixtures or limitations on application frequency. This incentive would provide a mechanism to register herbicides in ways that help to ensure herbicide longevity. Approaches based only on market or financial incentives have contributed to the current situation of widespread MHR. Our suggestion for regulatory creativity is one way to provide both financial and biological benefits to the registering company and to the overall stakeholder community by incentivizing good resistance management.


2006 ◽  
Vol 20 (3) ◽  
pp. 564-570 ◽  
Author(s):  
Robert G. Parker ◽  
Alan C. York ◽  
David L. Jordan

Field studies were conducted at three locations during both 2002 and 2003 to evaluate weed control and response of glyphosate-resistant (GR) corn to glyphosate or nicosulfuron plus atrazine applied POST at three application timings with and without alachlor plus atrazine applied PRE. The POST herbicides were applied timely (5- to 9-cm weeds) or applications were delayed 1 or 2 wk. All treatments, except the weedy check, were followed by glyphosate postemergence-directed (PDIR) 4 wk after the timely POST application. Common lambsquarters, common ragweed, Palmer amaranth, prickly sida, and smooth pigweed were controlled at least 94% regardless of PRE or POST treatments. Large crabgrass and fall panicum were controlled at least 96% by glyphosate regardless of PRE herbicide or POST application timing. In contrast, control by nicosulfuron plus atrazine POST in the absence of PRE herbicide decreased as application was delayed. Sicklepod was controlled at least 94% when POST herbicides were applied timely, but control by both POST herbicide treatments decreased with delayed application regardless of PRE herbicide. Tall morningglory was controlled 93% or greater by POST herbicides applied timely. Control by both POST herbicide treatments decreased as application was delayed, with glyphosate being affected more by timing than nicosulfuron plus atrazine. Corn grain yield was similar with glyphosate and nicosulfuron plus atrazine. Yield was unaffected by POST application timing when PRE herbicides were included. Without PRE herbicide, grain yield decreased as POST herbicide application was delayed.


2010 ◽  
Vol 24 (3) ◽  
pp. 234-243 ◽  
Author(s):  
Christie L. Stewart ◽  
Robert E. Nurse ◽  
Allan S. Hamill ◽  
Peter H. Sikkema

Deciding on the most efficacious PRE and POST herbicide options and their ideal application timing can be challenging for soybean producers. Climatic events during the 14 d before and after herbicide application can further complicate decisions because of their influence on herbicide effectiveness. Nine field trials were conducted at three locations in southwestern Ontario from 2003 to 2006, to determine the most effective PRE and POST soybean herbicides for control of common lambsquarters, common ragweed, green foxtail, and redroot pigweed. When precipitation was low at least 7 d before and after herbicide application weed control was reduced in treatments that included imazethapyr (PRE or POST) or flumetsulam/S-metolachlor (a premix formulation) (PRE). Cumulative precipitation during the 12 d after PRE application that exceeded the monthly average by at least 60% reduced common lambsquarters control when metribuzin was applied and green foxtail control when imazethapyr was applied. Delaying application of imazethapyr + bentazon to a later soybean growth stage decreased control of common lambsquarters and green foxtail; however, environmental conditions appeared to influence these results. Precipitation on the day of application decreased control of common ragweed and redroot pigweed more with quizalofop-p-ethyl + thifensulfuron-methyl + bentazon compared with imazethapyr + bentazon. Soybean yield varied among POST herbicide treatments because of reduced weed control. This research confirms that environmental conditions pre- and postapplication, as well as application timing, influence herbicide efficacy and should be considered by growers when selecting an herbicide program.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Peter M. Eure ◽  
David L. Jordan ◽  
Loren R. Fisher ◽  
Alan C. York

Information is limited concerning the impact of delaying applications of pesticides after solution preparation on efficacy. Experiments were conducted to determine weed control when diclosulam, dimethenamid-P, flumioxazin, fomesafen, imazethapyr, pendimethalin, andS-metolachlor were applied preemergence the day of solution preparation or 3, 6, and 9 days after solution preparation. Herbicide solutions were applied on the same day regardless of when prepared. Control of broadleaf signalgrass, common lambsquarters, entireleaf morningglory, and Palmer amaranth by these herbicides was not reduced regardless of when herbicide solutions were prepared. Surprisingly entireleaf morningglory control by all herbicides increased when herbicide application was delayed by 9 days. In separate experiments, control of broadleaf signalgrass by clethodim, common ragweed by glyphosate and lactofen, entireleaf morningglory by lactofen, Italian rye grass by glyphosate and paraquat, and Palmer amaranth by atrazine, dicamba, glufosinate, glyphosate, imazethapyr, lactofen, and 2,4-D was affected more by increase in weed size due to delayed application than the time between solution preparation and application.


2007 ◽  
Vol 21 (4) ◽  
pp. 997-1001 ◽  
Author(s):  
Derek M. Scroggs ◽  
Donnie K. Miller ◽  
James L. Griffin ◽  
Lawrence E. Steckel ◽  
David C. Blouin ◽  
...  

Field studies were conducted 2004 and 2005 to evaluate weed control following POST applications of glyphosate in combination with eitherS-metolachlor (premix formulation), pyrithiobac, or trifloxysulfuron in conjunction with glyphosate in second-generation glyphosate-resistant cotton (Roundup Ready Flex). These herbicides were applied in combination with glyphosate in a two-application program at the 2-leaf (LF) (followed by glyphosate alone at the 10-LF growth stage), 6-LF (following glyphosate alone at the 2-LF growth stage), or 10-LF (following glyphosate alone at the 2-LF growth stage) cotton growth stages. No differences in weed control between residual herbicide were observed for goosegrass, hemp sesbania, Johnsongrass, Palmer amaranth, redroot pigweed, sicklepod, or smellmelon. Optimum control of barnyardgrass and browntop millet was achieved with glyphosate plusS-metolachlor. No differences were observed among application timings for control of goosegrass, hemp sesbania, Johnsongrass, pitted morningglory, and smellmelon. Control of barnyardgrass, browntop millet, Palmer amaranth, redroot pigweed, and sicklepod was optimized with residual herbicide application at the 2- or 10-LF timing. No yield differences were observed between residual herbicides, and seed cotton yield averaged 2,800 kg/ha. Yield was maximized when residual herbicide was applied at the 2- or 10-LF growth stage (2,960 to 2,730 kg/ha). Analysis based on numerical yield at particular residual-herbicide application timings and calculated yield for each timing based on the percentage of a standard three-application glyphosate program indicated the most consistent residual-herbicide timing for optimizing yield in a reduced-input Roundup Ready Flex weed-control program occurred at the two-leaf growth stage. All reduced-input programs, however, resulted in cotton yield of at least 93% of that obtained with the standard program.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 232-237 ◽  
Author(s):  
J. Boyd Carey ◽  
Michael S. Defelice

Field studies were conducted to evaluate the influence of herbicide application timing on weed control in no-till soybean production. Row spacing generally had no effect on weed control. Herbicide treatments containing chlorimuron plus metribuzin applied as many as 45 days prior to planting in 1988 and 1989 controlled broadleaf weeds throughout the growing season. Imazaquin applied 45 and 30 days prior to planting provided poor control of common cocklebur in 1989. Giant foxtail control was inconsistent with all herbicide treatments. Soybean yields subsequent to early preplant herbicide applications were greater than or equal to those in which applications were made at planting when late-season weed control was adequate. Herbicides applied preemergence did not control high densities of common lambsquarters in 1989.


Sign in / Sign up

Export Citation Format

Share Document