Distribution of Herbicide-Resistant Giant Ragweed (Ambrosia trifida) in Indiana and Characterization of Distinct Glyphosate-Resistant Biotypes

Weed Science ◽  
2017 ◽  
Vol 65 (6) ◽  
pp. 699-709 ◽  
Author(s):  
Nick T. Harre ◽  
Haozhen Nie ◽  
Renae R. Robertson ◽  
William G. Johnson ◽  
Stephen C. Weller ◽  
...  

Giant ragweed is a highly competitive weed that continually threatens crop production systems due to evolved resistance to acetolactate synthase–inhibiting herbicides (ALS-R) and glyphosate (GR). Two biotypes of GR giant ragweed exist and are differentiated by their response to glyphosate, termed here as rapid response (RR) and non–rapid response (NRR). A comparison of data from surveys of Indiana crop fields done in 2006 and 2014 showed that GR giant ragweed has spread from 15% to 39% of Indiana counties and the NRR biotype is the most prevalent. A TaqMan®single-nucleotide polymorphism genotyping assay was developed to identify ALS-R populations and revealed 47% of GR populations to be ALS-R as well. The magnitude of glyphosate resistance for NRR populations was 4.6 and 5.9 based on GR50and LD50estimates, respectively. For RR populations, these values were 7.8 to 9.2 for GR50estimates and 19.3 to 22.3 for LD50estimates. A novel use of the Imaging-PAM fluorometer was developed to discriminate RR plants by assessing photosystem II quantum yield across the entire leaf surface. H2O2generation in leaves of glyphosate-treated plants was also measured by 3,3′-diaminobenzidine staining and quantified using imagery analysis software. Results show photo-oxidative stress of mature leaves is far greater and occurs more rapidly following glyphosate treatment in RR plants compared with NRR and glyphosate-susceptible plants and is positively associated with glyphosate dose. These results suggest that under continued glyphosate selection pressure, the RR biotype may surpass the NRR biotype as the predominant form of GR giant ragweed in Indiana due to a higher level of glyphosate resistance. Moreover, the differential photo-oxidative stress patterns in response to glyphosate provide evidence of different mechanisms of resistance present in RR and NRR biotypes.

2017 ◽  
Vol 32 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Zahoor A. Ganie ◽  
Simranpreet Kaur ◽  
Prashant Jha ◽  
Vipan Kumar ◽  
Amit J. Jhala

Giant ragweed is one of the most competitive annual broadleaf weeds in corn and soybean crop production systems in the United States and eastern Canada. Management of giant ragweed has become difficult due to the evolution of resistance to glyphosate and/or acetolactate synthase (ALS)-inhibitor herbicides and giant ragweed’s ability to emerge late in the season, specifically in the eastern Corn Belt. Late-season herbicide application may reduce seed production of weed species; however, information is not available about late-season herbicide applications on giant ragweed seed production. The objective of this study was to evaluate the effect of single or sequential late-season applications of 2,4-D, dicamba, glyphosate, and glufosinate on inflorescence injury and seed production of glyphosate-resistant (GR) giant ragweed under greenhouse and field conditions (bare ground study). Single and sequential applications of glufosinate resulted in as much as 59 and 60% injury to giant ragweed inflorescence and as much as 78 and 75% reduction in seed production, respectively, under field and greenhouse conditions. In contrast, single or sequential applications of 2,4-D or dicamba resulted in ≥ 96% inflorescence injury and reduction in seed production in the field as well as in greenhouse studies. The results indicated that 2,4-D or dicamba are effective options for reducing seed production of glyphosate-resistant giant ragweed even if applied late in the season. Targeting weed seed production to decrease the soil seedbank will potentially be an effective strategy for an integrated management of GR giant ragweed.


2021 ◽  
pp. 1-25
Author(s):  
Mandy Bish ◽  
Brian Dintelmann ◽  
Eric Oseland ◽  
Jacob Vaughn ◽  
Kevin Bradley

Abstract The evolution of herbicide-resistant weeds has resulted in the necessity to integrate non-chemical control methods with chemicals for effective management in crop production systems. In soybean, control of the pigweed species, particularly herbicide-resistant waterhemp and Palmer amaranth, have become predominant concerns. Cereal rye planted as a winter cover crop can effectively suppress early-season weed emergence in soybean, including waterhemp, when planted at a rate of 123 kg ha−1. The objectives of this study were to determine the effects of different cereal rye seeding rates (0, 34, 56, 79, 110, and 123 kg ha−1) on early-season waterhemp suppression and soybean growth and yield. Soybean was planted into fall-seeded cereal rye, which was terminated within four days of soybean planting. The experiment was conducted over the 2018, 2019, and 2020 growing seasons in Columbia, Missouri. Effects of cereal rye on early-season waterhemp suppression varied by year and were most consistent at 56 kg ha−1 or higher seeding rates. Linear regression analysis of cereal rye biomass, height, or stand at soybean planting showed inverse relationships with waterhemp emergence. No adverse effects to soybean growth or yield were observed at any of the cereal rye seeding rates relative to plots that lacked cereal rye cover. Result differences among the years suggest that the successfulness of cereal rye on suppression of early-season waterhemp emergence is likely influenced by the amount of waterhemp seed present in the soil seed bank.


2013 ◽  
Vol 27 (4) ◽  
pp. 656-663 ◽  
Author(s):  
Kristin K. Rosenbaum ◽  
Kevin W. Bradley

A survey of soybean fields containing waterhemp infestations was conducted just prior to harvest in 2008 and 2009 to determine the frequency and distribution of glyphosate-resistant waterhemp in Missouri, and to determine if there are any in-field parameters that may serve as indicators of glyphosate resistance in this species in future crop production systems. Glyphosate resistance was confirmed in 99 out of 144, or 69%, of the total waterhemp populations sampled, which occurred in 41 counties of Missouri. Populations of glyphosate-resistant waterhemp were more likely to occur in fields with no other weed species present at the end of the season, continuous cropping of soybean, exclusive use of glyphosate for several consecutive seasons, and waterhemp plants showing obvious signs of surviving herbicide treatment compared to fields characterized with glyphosate-susceptible waterhemp. Therefore, it is suggested that these four site parameters, and certain combinations of these parameters, serve as predictors of glyphosate resistance in future waterhemp populations.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 605-612 ◽  
Author(s):  
Xiangying Liu ◽  
Shihai Xiang ◽  
Tao Zong ◽  
Guolan Ma ◽  
Lamei Wu ◽  
...  

AbstractThe widespread, rapid evolution of herbicide-resistant weeds is a serious and escalating agronomic problem worldwide. During China’s economic boom, the country became one of the most important herbicide producers and consumers in the world, and herbicide resistance has dramatically increased in the past decade and has become a serious threat to agriculture. Here, following an evidence-based PRISMA (preferred reporting items for systematic reviews and meta-analyses) approach, we carried out a systematic review to quantitatively assess herbicide resistance in China. Multiple weed species, including 26, 18, 11, 9, 5, 5, 4, and 3 species in rice (Oryza sativa L.), wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), canola (Brassica napus L.), cotton (Gossypium hirsutum L.)., orchards, and peanut (Arachis hypogaea L.) fields, respectively, have developed herbicide resistance. Acetolactate synthase inhibitors, acetyl-CoA carboxylase inhibitors, and synthetic auxin herbicides are the most resistance-prone herbicides and are the most frequently used mechanisms of action, followed by 5-enolpyruvylshikimate-3-phosphate synthase inhibitors and protoporphyrinogen oxidase inhibitors. The lack of alternative herbicides to manage weeds that exhibit cross-resistance or multiple resistance (or both) is an emerging issue and poses one of the greatest threats challenging the crop production and food safety both in China and globally.


2019 ◽  
Vol 33 (2) ◽  
pp. 355-365 ◽  
Author(s):  
Russ Garetson ◽  
Vijay Singh ◽  
Shilpa Singh ◽  
Peter Dotray ◽  
Muthukumar Bagavathiannan

AbstractA state-level survey was conducted across major row-crop production regions of Texas to document the level of sensitivity of Palmer amaranth to glyphosate, atrazine, pyrithiobac, tembotrione, fomesafen, and dicamba. Between 137 and 161 Palmer amaranth populations were evaluated for sensitivity to the labelled field rate (1X), and rated as resistant (≤49% injury), less sensitive (50% to 89% injury), or susceptible (90% to 100% injury). For glyphosate, 62%, 19%, 13%, and 13% of the populations from the High Plains, Central Texas, Rio Grande Valley, and Lower Gulf Coast, respectively, were resistant. Resistance to atrazine was more common in Palmer amaranth populations from the High Plains than in other regions, with 16% of the populations resistant and 22% less sensitive. Approximately 90% of the populations from the High Plains that exhibited resistance to atrazine POST also were resistant to atrazine PRE. Of the 160 populations tested for pyrithiobac, approximately 99% were resistant or less sensitive, regardless of the region. No resistance was found to fomesafen, tembotrione, or dicamba. However, 22% of the populations from the High Plains were less sensitive to 1X (93 g ai ha−1) tembotrione, but were killed at 2X, illustrating the background variability in sensitivity to this herbicide. For dicamba, three populations, all from the High Plains, exhibited less sensitivity at the 1X rate (controlled at the 2X rate; 1X = 560 g ae ha−1). One population exhibited multiple resistance to three herbicides with distinct sites of action (SOAs) involving acetolactate synthase, 5-enolpyruvylshikimate-3-phosphate synthase, and photosystem II inhibitors. Palmer amaranth populations exhibited less sensitivity to approximately 15 combinations of herbicides involving up to five SOAs. Dose-response assays conducted on the populations most resistant to glyphosate, pyrithiobac, or atrazine indicated they were 30-, 32-, or 49-fold or more resistant to these herbicides, respectively, compared with a susceptible standard.


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 570-584 ◽  
Author(s):  
Micheal D. K. Owen

Herbicides have been the principal means of weed control in developed countries for approximately 50 yr because they are the most cost-effective method. Such general use of herbicides has resulted in weed resistance to herbicides, which continues to be a growing problem. Within the past decade, the evolution of resistance to the once-dominant herbicide glyphosate has resulted in major concerns about the future ability to control weeds in many crop systems. Moreover, many weed species have evolved resistance to multiple mechanisms of herbicide action. Given the dearth of new herbicides with novel mechanisms of action, it appears inevitable that weed management programs will need to be supplemented by the use of tactics other than herbicides. However, the inclusion of more diversity for weed management also introduces complexity, cost, and time constraints to current crop production systems. This paper describes broadly the considerations, opportunities, and constraints of diverse weed management tactics to address the burgeoning problems with herbicide resistance.


Weed Science ◽  
2012 ◽  
Vol 60 (SP1) ◽  
pp. 31-62 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Sarah M. Ward ◽  
David R. Shaw ◽  
Rick S. Llewellyn ◽  
Robert L. Nichols ◽  
...  

Herbicides are the foundation of weed control in commercial crop-production systems. However, herbicide-resistant (HR) weed populations are evolving rapidly as a natural response to selection pressure imposed by modern agricultural management activities. Mitigating the evolution of herbicide resistance depends on reducing selection through diversification of weed control techniques, minimizing the spread of resistance genes and genotypes via pollen or propagule dispersal, and eliminating additions of weed seed to the soil seedbank. Effective deployment of such a multifaceted approach will require shifting from the current concept of basing weed management on single-year economic thresholds.


2019 ◽  
Vol 34 (1) ◽  
pp. 129-139 ◽  
Author(s):  
Vijay Singh ◽  
Russ Garetson ◽  
Josh McGinty ◽  
Peter Dotray ◽  
Gaylon Morgan ◽  
...  

AbstractWe conducted a survey in the major row-crop production regions of Texas to determine the response of waterhemp to glyphosate (5-enolpyruvylshikimate-3-phosphate synthase [EPSPS] inhibitor), atrazine (photosystem II [PSII] inhibitor), pyrithiobac (acetolactate synthase [ALS] inhibitor), tembotrione (hydroxyphenylpyruvate dioxygenase [HPPD] inhibitor), fomesafen (protoporphyrinogen oxidase [PPO] inhibitor), and dicamba (synthetic auxin). We evaluated 127 accessions for these herbicides. Resistance was confirmed on the basis of plant survival within an accession, and the injury ratings of surviving plants were used to categorize each accession as resistant (<50% injury) or less sensitive (50% to 89% injury). For glyphosate, approximately 27% of all tested accessions were resistant and 20% were less sensitive. The Gulf Coast region had the most glyphosate-resistant accessions (46% of the accessions from this region), followed by the Blacklands region (9%). A dose-response assay of the most resistant waterhemp accession (TX-25) exhibited 17-fold resistance to glyphosate when compared with a susceptible standard. Waterhemp resistance to atrazine also was common in the Gulf Coast region. The accession with the greatest atrazine resistance (TX-31) exhibited 47- and 68-fold resistance to this herbicide when applied POST and PRE, respectively. Widespread resistance to pyrithiobac was observed in waterhemp accessions throughout the Blacklands and Gulf Coast regions. The most resistant accession identified in this study was 61-fold resistant compared with a susceptible standard. No high-level resistance was detected for tembotrione, dicamba, or fomesafen, but high variability in sensitivity to tembotrione and dicamba was observed. One waterhemp accession exhibited reduced sensitivity to fomesafen; the rest were sensitive. Overall, at least two accessions exhibited resistance or reduced sensitivity to herbicides with five different sites of action. The study illustrates the prevalence of multiple herbicide resistance in waterhemp accessions in Texas and emphasizes the need to implement diversified management tactics.


2015 ◽  
Vol 29 (3) ◽  
pp. 464-471 ◽  
Author(s):  
Ross A. Recker ◽  
Joseph G. Lauer ◽  
David E. Stoltenberg ◽  
Paul D. Mitchell ◽  
Vince M. Davis

Atrazine is an important herbicide for broadleaf weed control in corn. Use rates have declined in many corn production systems due to environmental concerns and the availability of other effective herbicides, especially glyphosate in glyphosate-resistant hybrids. However, using multiple effective herbicide modes of action is ever more important because occurrence of herbicide-resistant weeds is increasing. An experiment to compare application timings of reduced rates of atrazine to benefit resistance management in broadleaf weeds while protecting corn yield was conducted in Wisconsin across four site-years in 2012 and 2013. Herbicide treatments consisted of five atrazine rate and timing combinations and three POST base herbicides: glyphosate, glufosinate, and tembotrione. Metolachlor was applied PRE at 2.1 kg ai ha−1 for grass control in all treatments. A linear regression model estimated that atrazine rates ≥ 1.0 kg ai ha−1 applied PRE would prevent exposure of common lambsquarters plants to POST herbicides, but giant ragweed and velvetleaf exposure was not influenced by timing. Corn yield was also not influenced by atrazine rate and timing combinations at the α = 0.05 level; however, at P = 0.06, corn yield was greater for atrazine applied PRE at 1.1 kg ha−1 than for atrazine applied PRE at 0.5 kg ha−1, POST at 1.1 kg ha−1, or not at all. In summary, higher rates of atrazine applied PRE may improve yield, as reported by others, but this study concludes reduced rates of atrazine (i.e., ≤ 1.1 kg ha−1) applied to corn in a POST tank mixture combination provided more consistent control of giant ragweed, velvetleaf, and common lambsquarters compared with atrazine applied PRE. This information should help direct atrazine application timing applied POST when applied at low rates to improve proactive herbicide resistance management.


Sign in / Sign up

Export Citation Format

Share Document