Raman spectroscopy probe detects bladder cancer in vivo

2010 ◽  
Vol 82 (15) ◽  
pp. 6320-6320 ◽  
Author(s):  
Nancy D. Lamontagne
2010 ◽  
Vol 82 (14) ◽  
pp. 5993-5999 ◽  
Author(s):  
Ronald O. P. Draga ◽  
Matthijs C. M. Grimbergen ◽  
Peter L. M. Vijverberg ◽  
Christiaan F. P. van Swol ◽  
Trudy G. N. Jonges ◽  
...  

2020 ◽  
pp. 1-12
Author(s):  
Maroeska J. Burggraaf ◽  
Lisette Waanders ◽  
Mariska Verlaan ◽  
Janneke Maaskant ◽  
Diane Houben ◽  
...  

BACKGROUND: Bladder cancer is the ninth most common cancer in men. 70% of these tumors are classified as non-muscle invasive bladder cancer and those patients receive 6 intravesical instillations with Mycobacterium bovis BCG after transurethral resection. However, 30% of patients show recurrences after treatment and experience severe side effects that often lead to therapy discontinuation. Recently, another vaccine strain, Salmonella enterica typhi Ty21a, demonstrated promising antitumor activity in vivo. Here we focus on increasing bacterial retention in the bladder in order to reduce the number of instillations required and improve antitumor activity. OBJECTIVE: To increase the binding of Ty21a to the bladder wall by surface labeling of the bacteria with adhesion protein FimH and to study its effect in a bladder cancer mouse model. METHODS: Binding of Ty21a with surface-labeled FimH to the bladder wall was analyzed in vitro and in vivo. The antitumor effect of a single instillation of Ty21a+FimH in treatment was determined in a survival experiment. RESULTS: FimH-labeled Ty21a showed significant (p <  0.0001) improved binding to mouse and human cell lines in vitro. Furthermore, FimH labeled bacteria showed ∼5x more binding to the bladder than controls in vivo. Enhanced binding to the bladder via FimH labeling induced a modest improvement in median but not in overall mice survival. CONCLUSIONS: FimH labeling of Ty21a significantly improved binding to bladder tumor cells in vitro and the bladder wall in vivo. The improved binding leads to a modest increase in median survival in a single bladder cancer mouse study.


Oncogene ◽  
2021 ◽  
Author(s):  
Qiuxia Yan ◽  
Peng Zeng ◽  
Xiuqin Zhou ◽  
Xiaoying Zhao ◽  
Runqiang Chen ◽  
...  

AbstractThe prognosis for patients with metastatic bladder cancer (BCa) is poor, and it is not improved by current treatments. RNA-binding motif protein X-linked (RBMX) are involved in the regulation of the malignant progression of various tumors. However, the role of RBMX in BCa tumorigenicity and progression remains unclear. In this study, we found that RBMX was significantly downregulated in BCa tissues, especially in muscle-invasive BCa tissues. RBMX expression was negatively correlated with tumor stage, histological grade and poor patient prognosis. Functional assays demonstrated that RBMX inhibited BCa cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth and metastasis in vivo. Mechanistic investigations revealed that hnRNP A1 was an RBMX-binding protein. RBMX competitively inhibited the combination of the RGG motif in hnRNP A1 and the sequences flanking PKM exon 9, leading to the formation of lower PKM2 and higher PKM1 levels, which attenuated the tumorigenicity and progression of BCa. Moreover, RBMX inhibited aerobic glycolysis through hnRNP A1-dependent PKM alternative splicing and counteracted the PKM2 overexpression-induced aggressive phenotype of the BCa cells. In conclusion, our findings indicate that RBMX suppresses BCa tumorigenicity and progression via an hnRNP A1-mediated PKM alternative splicing mechanism. RBMX may serve as a novel prognostic biomarker for clinical intervention in BCa.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 922
Author(s):  
William Querido ◽  
Shital Kandel ◽  
Nancy Pleshko

Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how “spectral fingerprints” can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.


Phytomedicine ◽  
2019 ◽  
Vol 64 ◽  
pp. 153069 ◽  
Author(s):  
Seung-Shick Shin ◽  
Yu-Jin Park ◽  
Byungdoo Hwang ◽  
Sung Lyea Park ◽  
Sang-Wook Han ◽  
...  

2017 ◽  
Vol 16 (7) ◽  
pp. 571-584 ◽  
Author(s):  
Hongzhi Guo ◽  
Josep Miquel Jornet ◽  
Qiaoqiang Gan ◽  
Zhi Sun
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document