Deep Learning of Morphologic Correlations To Accurately Classify CD4+ and CD8+ T Cells by Diffraction Imaging Flow Cytometry

Author(s):  
Lin Zhao ◽  
Liwen Tang ◽  
Marion S. Greene ◽  
Yu Sa ◽  
Wenjin Wang ◽  
...  
2021 ◽  
Author(s):  
Zoltán Göröcs ◽  
David Baum ◽  
Fang Song ◽  
Kevin de Haan ◽  
Hatice Ceylan Koydemir ◽  
...  

2019 ◽  
Vol 3 (s1) ◽  
pp. 13-13
Author(s):  
Lauren Norell Krumeich ◽  
Tatiana Akimova ◽  
Jason Stadanlick ◽  
Abhishek Rao ◽  
Neil Sullivan ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Objective: apply checkpoint inhibitors that are specific to the exhaustive markers expressed on tumor CD8+ T-cells ex vivo in order to improve cytokine release and cytotoxic function in comparison to two control groups: (1.) T-cells that receive no antibodies; (2.) T-cells that receive standard inhibition with PD-1 and CTLA-4 antibodies only. Long-term objective: provide personalized medicine in the treatment of HCC by using checkpoint inhibitors that are specific to the receptors expressed by an individual tumor. METHODS/STUDY POPULATION: The study population includes patients undergoing liver transplantation or surgical resection for HCC. Two grams of tumor, two grams of healthy liver tissue at least one centimeter from the tumor margin, and 50 milliliters of blood will be obtained. Solid tissue will be mechanically and enzymatically disrupted and CD8+ T-cells will be isolated from all sites. Using flow cytometry, the expression of surface receptors PD-1, CTLA-4, LAG-3, TIM-3, BTLA, CD244, and CD160 will be categorized in each tissue to identify which receptors are upregulated in the tumor microenvironment. Up to three antibodies specific to the upregulated receptor(s) on the tumor T-cells will be applied per specimen. The experimental arm will receive these antibodies and co-stimulation with CD3/CD28 and will be compared to two controls. One control will receive only CD3/CD28, and the other will receive CD3/CD28 in addition to the standard combination of PD-1 and CTLA-4 inhibitors. From each condition, flow cytometry will be used to assess the mean production of interleukin-2, tumor necrosis factor-α, interferon-γ, granzyme B, and perforin expression as an assessment of T-cell function. RESULTS/ANTICIPATED RESULTS: Preliminary data from the peripheral blood of healthy controls confirms that the developed flow cytometry panels effectively identify the surface receptors and cytokine production of CD8+ T-cells. Two patients have successfully been enrolled in this study. It is predicted that T-cells extracted from the tumor will express more inhibitory receptors than normal liver or peripheral blood and will have increased function after they are targeted with checkpoint inhibitors that are specific to the inhibitory surface receptors they express. DISCUSSION/SIGNIFICANCE OF IMPACT: HCC is the second leading cause of cancer-related death worldwide and therapeutic options are limited for patients who are not surgical candidates. T-cells are a critical component of the anti-tumor response to HCC. However, T-cells can develop an exhausted phenotype characterized by up-regulated inhibitory receptors (PD-1, CTLA-4, LAG-3, TIM-3, CD-244, CD-160, BTLA) and decreased function, allowing for immune escape. Clinical trials using combined checkpoint inhibition with PD-L1 and CTLA-4 antibodies have been considered a breakthrough for patients with advanced HCC, as up to 25% show an objective tumor response. The explanation for the varied susceptibility to checkpoint inhibition remains unknown and is hypothesized to be secondary to inconsistencies in the expression of surface inhibitory receptors. Although inhibitory receptor expression has been shown to be upregulated under conditions of hepatitis and/or HCC, there has been no single study to effectively investigate the expression of all known inhibitors in order to better explore the interplay between them. It will be of great academic interest and clinical purpose to evaluate individual receptor expression and engage the correlating antibodies given the possibility of synergism between receptors and the need for a more profound anti-tumor T-cell response in HCC.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 408-408 ◽  
Author(s):  
Yoshiyuki Takahashi ◽  
S. Chakrabarti ◽  
R. Sriniivasan ◽  
A. Lundqvist ◽  
E.J. Read ◽  
...  

Abstract AMD3100 (AMD) is a bicyclam compound that rapidly mobilizes hematopoietic progenitor cells into circulation by inhibiting stromal cell derived factor-1 binding to its cognate receptor CXCR4 present on CD34+ cells. Preliminary data in healthy donors and cancer patients show large numbers of CD34+ cells are mobilized following a single injection of AMD3100. To determine whether AMD3100 mobilized cells would be suitable for allografting, we performed a detailed phenotypic analysis using 6 color flow cytometry (CYAN Cytometer MLE) of lymphocyte subsets mobilized following the administration of AMD3100, given as a single 240mcg/kg injection either alone (n=4) or in combination with G-CSF (n=2: G-CSF 10 mcg/kg/day x 5: AMD3100 given on day 4). Baseline peripheral blood (PB) was obtained immediately prior to mobilization; in recipients who received both agents, blood was analyzed 4 days following G-CSF administration as well as 12 hours following administration of AMD3100 and a 5th dose of G-CSF. AMD3100 alone significantly increased from baseline the PB WBC count (2.8 fold), Absolute lymphocyte count (ALC: 2.5 fold), absolute monocyte count (AMC: 3.4 fold), and absolute neutrophil count (ANC: 2.8 fold). Subset analysis showed AMD3100 preferentially increased from baseline PB CD34+ progenitor counts (5.8 fold), followed by CD19+ B-cells (3.7 fold), CD14+ monocytes (3.4 fold), CD8+ T-cells (2.5 fold), CD4+ T-cells (1.8 fold), with a smaller increase in CD3−/CD16+ or CD56+ NK cell counts (1.6 fold). There was no change from baseline in the % of CD4+ or CD8+ T-cell expressing CD45RA, CD45RO, or CD56, CD57, CD27, CD71 or HLA-DR. In contrast, there was a decline compared to baseline in the mean percentage of CD3+/CD4+ T-cells expressing CD25 (5.5% vs 14.8%), CD62L (12.1% vs 41.1%), CCR7 (2.1% vs 10.5%) and CXCR4 (0.5% vs 40.9%) after AMD3100 administration; similar declines in expression of the same 4 surface markers were also observed in CD3+/CD8+ T-cells. A synergistic effect on the mobilization of CD34+ progenitors, CD19+ B cells, CD3+ T-cells and CD14+ monocytes occurred when AMD3100 was combined with G-CSF (Figure). In those receiving both AMD3100 and G-CSF, a fall in the % of T-cells expressing CCR7 and CXCR4 occurred 12 hours after the administration of AMD3100 compared to PB collected after 4 days of G-CSF; no other differences in the expression of a variety activation and/or adhesion molecules on T-cell subsets were observed. Whether differences in lymphocyte subsets mobilized with AMD3100 alone or in combination with G-CSF will impact immune reconstitution or other either immune sequela (i.e. GVHD, graft-vs-tumor) associated with allogeneic HCT is currently being assessed in an animal model of allogeneic transplantation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3267-3267
Author(s):  
Lauren T. Southerland ◽  
Jian-Ming Li ◽  
Sohrab Hossain ◽  
Cynthia Giver ◽  
Wayne Harris ◽  
...  

Abstract Background: The severe morbidity and mortality associated with bone marrow transplantation (BMT) is caused by uninhibited immune responses to alloantigen and suppressed immune responses to pathogens. Vasoactive Intestinal Peptide (VIP) is an immunomodulatory neuropeptide produced by T-cells and nerve fibers in peripheral lymphoid organs that suppresses immune responses by induction of tolerogenic dendritic cells. In order to determine the immunoregulatory effects of VIP, we examined T-cell immune responses to allo- and viral-antigens in VIP knockout (KO) mice and mouse BMT recipients of hematopoietic cells from VIP KO donors. Methods: VIP KO mice and VIP WT littermates were infected with lethal or sub-lethal doses (5 × 104− 5 × 105 PFU) of murine cytomegalovirus (mCMV) and the T-cell response to viral antigen was measured by flow cytometry for mCMV peptide-MHC class 1-tetramer+ CD8+ T-cells. We transplanted 5 × 106 BM plus 1 × 106 splenocytes (SP) either from VIP KO or VIP WT donors in an C57BL/6 to F1(BL/6 × Balb/c) allo-BMT model and assessed survival, GvHD, donor T-cell expansion, chimerism, and response to mCMV vaccination and mCMV infection. Results: B-cell, αβ and γδ T-cell, CD8+ T-cell, CD11b+ myeloid cell, and dendritic cell numbers were equivalent between VIP KO and WT mice, while VIP KO mice had higher number of CD4+ and CD4+CD62L+CD25+ T-cells. Non-transplanted VIP KO mice survived mCMV infection better compared to VIP WT, with a brisker anti-viral T-cell response in the blood. In the allogeneic BMT setting, recipients of VIP KO BM plus VIP KO SP had more weight loss and lower (40%) 100 day post-transplant survival compared to the recipients of VIP KO BM plus WT SP (80% survival), recipients of WT BM plus KO SP (100% survival), and recipients of WT BM plus WT SP (80% survival). Recipients of VIP KO grafts had a significantly greater anti-mCMV response that peaked four days earlier than the tetramer response of mice transplanted with WT cells. This increased anti-viral response to vaccination correlated with a greater and more rapid T-cell response to secondary viral challenge. Conclusions: These experiments suggest that the absence of all VIP in the body, or the absence of VIP in a transplanted immune system, enhances anti-viral immunity and allo-immune responses. Modulation of the VIP pathway is a novel method to regulate post-transplant immunity. Figure 1: VIP knockout(KO) mice have an increased CMV tetramer response. VIP KO and VIP WT mice were infected (day 0) with either a sub-lethal low dose (5 × 10^4 PFU) or a lethal high dose (5 × 10^5 PFU) of CMV. Peripheral blood was stained for T cell markers and tetramer and analyzed by flow cytometry. On day 3, high dosed VIP KO mice had a higher number of tetramer positive CD8 T cells and better survival than WT mice (all high dose VIP WT died prior to day 10). VIP KO mice had a significant increase in tetramer positive CD8 T cells between days 3 and 10. *** p<0.01, difference between VIP KO and VIP WT littermate at designated dose level and day. Figure 1:. VIP knockout(KO) mice have an increased CMV tetramer response. VIP KO and VIP WT mice were infected (day 0) with either a sub-lethal low dose (5 × 10^4 PFU) or a lethal high dose (5 × 10^5 PFU) of CMV. Peripheral blood was stained for T cell markers and tetramer and analyzed by flow cytometry. On day 3, high dosed VIP KO mice had a higher number of tetramer positive CD8 T cells and better survival than WT mice (all high dose VIP WT died prior to day 10). VIP KO mice had a significant increase in tetramer positive CD8 T cells between days 3 and 10. *** p<0.01, difference between VIP KO and VIP WT littermate at designated dose level and day.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3539-3539
Author(s):  
Jacopo Mariotti ◽  
Kaitlyn Ryan ◽  
Paul Massey ◽  
Nicole Buxhoeveden ◽  
Jason Foley ◽  
...  

Abstract Abstract 3539 Poster Board III-476 Pentostatin has been utilized clinically in combination with irradiation for host conditioning prior to reduced-intensity allogeneic hematopoietic stem cell transplantation (allo-HSCT); however, murine models utilizing pentostatin to facilitate engraftment across fully MHC-disparate barriers have not been developed. To address this deficit in murine modeling, we first compared the immunosuppressive and immunodepleting effects of pentostatin (P) plus cyclophosphamide (C) to a regimen of fludarabine (F) plus (C) that we previously described. Cohorts of mice (n=5-10) received a three-day regimen consisting of P alone (1 mg/kg/d), F alone (100 mg/kg/d), C alone (50 mg/kg/d), or combination PC or FC. Combination PC or FC were each more effective at depleting and suppressing splenic T cells than either agent alone (depletion was quantified by flow cytometry; suppression was quantified by cytokine secretion after co-stimulation). The PC and FC regimens were similar in terms of yielding only modest myeloid suppression. However, the PC regimen was more potent in terms of depleting host CD4+ T cells (p<0.01) and CD8+ T cells (p<0.01), and suppressing their function (cytokine values are pg/ml/0.5×106 cells/ml; all comparisons p<0.05) with respect to capacity to secrete IFN-g (13±5 vs. 48±12), IL-2 (59±44 vs. 258±32), IL-4 (34±10 vs. 104±12), and IL-10 (15±3 vs. 34±5). Next, we evaluated whether T cells harvested from PC-treated and FC-treated hosts were also differentially immune suppressed in terms of capacity to mediate an alloreactive host-versus-graft rejection response (HVGR) in vivo when transferred to a secondary host. BALB/c hosts were lethally irradiated (1050 cGy; day -2), reconstituted with host-type T cells from PC- or FC-treated recipients (day -1; 0.1 × 106 T cells transferred), and challenged with fully allogeneic transplant (B6 donor bone marrow, 10 × 106 cells; day 0). In vivo HVGR was quantified on day 7 post-BMT by cytokine capture flow cytometry: absolute number of host CD4+ T cells secreting IFN-g in an allospecific manner was ([x 106/spleen]) 0.02 ± 0.008 in recipients of PC-treated T cells and 1.55 ± 0.39 in recipients of FC-treated cells (p<0.001). Similar results were obtained for allospecific host CD8+ T cells (p<0.001). Our second objective was to characterize the host immune barrier for engraftment after PC treatment. BALB/c mice were treated for 3 days with PC and transplanted with TCD B6 bone marrow. Surprisingly, such PC-treated recipients developed alloreactive T cells in vivo and ultimately rejected the graft. Because the PC-treated hosts were heavily immune depleted at the time of transplantation, we reasoned that failure to engraft might be due to host immune T cell reconstitution after PC therapy. In an experiment performed to characterize the duration of PC-induced immune depletion and suppression, we found that although immune depletion was prolonged, immune suppression was relatively transient. To develop a more immune suppressive regimen, we extended the C therapy to 14 days (50 mg/Kg) and provided a longer interval of pentostatin therapy (administered on days 1, 4, 8, and 12). This 14-day PC regimen yielded CD4+ and CD8+ T cell depletion similar to recipients of a lethal dose of TBI, more durable immune depletion, but again failed to achieve durable immune suppression, therefore resulting in HVGR and ultimate graft rejection. Finally, through intensification of C therapy (to 100 mg/Kg for 14 days), we were identified a PC regimen that was both highly immune depleting and achieved prolonged immune suppression, as defined by host inability to recover T cell IFN-g secretion for a full 14-day period after completion of PC therapy. Finally, our third objective was to determine with this optimized PC regimen might permit the engraftment of MHC disparate, TCD murine allografts. Indeed, using a BALB/c-into-B6 model, we found that mixed chimerism was achieved by day 30 and remained relatively stable through day 90 post-transplant (percent donor chimerism at days 30, 60, and 90 post-transplant were 28 ± 8, 23 ± 9, and 21 ± 7 percent, respectively). At day 90, mixed chimerism in myeloid, T, and B cell subsets was observed in the blood, spleen, and bone marrow compartments. Pentostatin therefore synergizes with cyclophosphamide to deplete, suppress, and limit immune reconstitution of host T cells, thereby allowing engraftment of T cell-depleted allografts across MHC barriers. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document